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WebAssembly
WebAssembly (Wasm) is a low-level bytecode language [HRS+17].

l Runs on the Web for client and server applications.
l Compilation target for major programming languages.
l Rapidly evolving with rising industry adoption.
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WebAssembly
Wasm is characterised by its strong formalism [Ros25].
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WebAssembly
Wasm even includes soundness theorems in its specification [Wor22a]:
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WasmCert
This formalism enables a precisemechanisation of Wasm.

WasmCert-Rocq and WasmCert-Isabelle provide
a complete mechanisation of Wasm in Rocq and Isabelle/HOL [WRPP+21].

Inductive be_typing : t_context -> seq basic_instruction -> function_type -> Prop :=
| bet_const : forall C v, be_typing C [::BI_const v] (Tf [::] [::typeof v])
| bet_unop : forall C t op,

unop_type_agree t op -> be_typing C [::BI_unop t op] (Tf [::t] [::t])
| bet_binop : forall C t op,

binop_type_agree t op -> be_typing C [::BI_binop t op] (Tf [::t; t] [::t])
...
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Problem
Formal rules need to be translated into multiple formats.

l Declarative representations in LATEX format
l Algorithmic representations in prose format
l Reference interpreter in OCaml
l Test suite in .wast format
l Mechanised definitions in Coq

Manual translation is just too tedious!

l Prone to human error.
l Not scalable as the Wasm specification continues to grow.
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SpecTec
SpecTec DSL serves as a “single source of truth” from which key artefacts can be
auto-generated [YSL+24].

Not limited to Wasm (but some backends are specialised).

Wasm 3.0 specification will be produced with SpecTec [Ros25]!
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SpecTec
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IL2Rocq
IL2Rocq is the work of Diego, a master’s student from last year [Cup24].

Major achievements by Diego:

l Implemented a SpecTec backend for Rocq mechanised definitions
l Completed the preservation proof using auto-translated Rocq definitions!
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Timeline
1. 2017~: Wasm 1.0 draft is released [HRS+17]

2. 2018~: WasmCert is developed [Wat18, WRPP+21]

3. 2019~: Wasm 1.0 is officially released [Wor19]

4. 2024~: IL2Rocq is developed [Cup24]

5. 2024: Preservation proof is completed [Cup24]

6. 2025: Progress proof is completed (NEW)
7. 2025: Lemmagen is developed (NEW)
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Project
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Contributions
l Progress Proof
l Decidable Equality Proofs
l First-Order Logic Extension in DSL
l TemplateMechanism in DSL
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Contributions
l Progress Proof
l Decidable Equality Proofs
l First-Order Logic Extension in DSL
l TemplateMechanism in DSL
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Progress Proof
Continuation of Diego’s work on IL2Coq and the preservation proof [Cup24].

l Proof bymutual induction on the structures of 2-3 typing relations.
l Accommodates key differences between the SpecTec DSL and WasmCert-Rocq.

Theorem t_progress :
forall s f es ts,
Config_ok (config__ (state__ s f) es) ts ->
terminal_form es \/
exists s' f' es',
Step (config__ (state__ s f) es) (config__ (state__ s' f') es').
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Progress Proof
Continuation of Diego’s work on IL2Coq and the preservation proof [Cup24].

l Proof bymutual induction on the structures of 2-3 typing relations.
l Accommodates key differences between the SpecTec DSL and WasmCert-Rocq.

Lemma t_progress_e: forall s C C' f vcs es tf ts1 ts2 lab ret,
Admin_instrs_ok s C es tf ->
tf = functype__ ts1 ts2 ->
C = (upd_local_label_return C' (map typeof f.(frame__LOCALS)) lab ret) ->
Module_instance_ok s f.(frame__MODULE) C' ->
map typeof vcs = ts1 ->
Store_ok s ->
not_lf_br es ->
not_lf_return es ->
terminal_form (list__val__admininstr vcs ++ es) \/
exists s' f' es', Step (config__ (state__ s f) (list__val__admininstr vcs ++ es))

(config__ (state__ s' f') es').
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Modifications to DSL
Key errors in the DSL found during the proof development
(mostly acknowledged by Andreas and Conrad):

+rule Step/ctxt-seq:
+ z; val* admininstr* admininstr''* ~> z'; val* admininstr'* admininstr''*
+ -- Step: z; admininstr* ~> z'; admininstr'*

rule Step/ctxt-frame:
- s; f; (FRAME_ n `{f'} admininstr*) ~> s'; f; (FRAME_ n `{f'} admininstr'*)
- -- Step: s; f'; admininstr* ~> s'; f'; admininstr'*
+ s; f; (FRAME_ n `{f'} admininstr*) ~> s'; f; (FRAME_ n `{f''} admininstr'*)
+ -- Step: s; f'; admininstr* ~> s'; f''; admininstr'*
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Modifications to DSL
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Project
Decidable Equality Proofs
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Contributions
l Progress Proof
l Decidable Equality Proofs
l First-Order Logic Extension in DSL
l TemplateMechanism in DSL
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Motivation
Decidable equality is essential for case analysis in Rocq proofs.

l In Rocq proofs, we must show x = y ∨ x ̸= y explicitly (constructive logic).
l In hand-written proofs, showing x = y ∨ x ̸= y is not necessary (classical logic).

Manually proven for each data type in the progress proof.

Automated by extending IL2Rocq.
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Decidable Equality Proofs
Based on WasmCert-Rocq’s approach [BGP+25].

l Fully automated proofs for all data types.
l Proofs are significantly simplified compared to WasmCert-Rocq (about 100 to 10 lines).

Ltac rect'_build_projection proj rect :=
let t :=

lazymatch type of rect with
| forall P : ?t -> Type, _ => t
end in

let g := rect'_type_projection proj rect in
refine (_ : g);
...

Definition administrative_instruction_eq_dec : forall e1 e2 :
administrative_instruction,↪→

{e1 = e2} + {e1 <> e2}.
Proof. decidable_equality_using

administrative_instruction_rect'. Defined.↪→
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Decidable Equality Proofs
Based on WasmCert-Rocq’s approach [BGP+25].

l Fully automated proofs for all data types.
l Proofs are significantly simplified compared to WasmCert-Rocq (about 100 to 10 lines).

Create HintDb eq_dec_db.

Ltac decidable_equality_step :=
do [ by eauto with eq_dec_db | decide equality ].

Fixpoint admininstr_eq_dec (v1 v2 : admininstr ) {struct v1} :
{v1 = v2} + {v1 <> v2}.

Proof. decide equality; do ? decidable_equality_step. Defined.
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Project
First-Order Logic Extension in DSL
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Contributions
l Progress Proof
l Decidable Equality Proofs
l First-Order Logic Extension in DSL
l TemplateMechanism in DSL
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Motivation
More theorems are expected in the Wasm 3.0 draft [Wor22b]:

l Principal types
l Type lattice
l Properties on compositionality of instruction sequences

Makes sense to specify theorems in the DSL as a “single source of truth” [YSL+24]:

l Enforces uniform style of theorem statements across theorem provers.
l Allows translation of theorems into LATEX and prose formats.
l Guarantees that theorems in the specification precisely match the mechanised definitions.
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Scope
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Design
DSL syntax extensions and examples:

def ::=
...
"theorem" thmid ":" exp hint*
"lemma" thmid ":" exp hint*
"theorem" thmid hint* "=" exp
"lemma" thmid hint* "=" exp

exp ::=
...
"@" "(" relid ":" exp ")"
"@" "(" exp ")" iter*
forall args exp
exists args exp

theorem t_progress =
forall (s, f, admininstr*, t?)
@(Config_ok: |- s; f; admininstr* : t?) =>
$terminal__form(admininstr*) \/
exists (s', f', admininstr'*)
@(Step: s; f; admininstr* ~> s'; f'; admininstr'*)
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Results
Produced by Coq, LATEX and prose backends:

Theorem t_progress : forall (v_s : store) (v_f : frame) (v_admininstr :
(list admininstr)) (v_t : (option valtype)), ((Config_ok (config__
(state__ v_s v_f) v_admininstr) v_t) -> ((fun_terminal_form
v_admininstr) \/ exists (v_s' : store) (v_f' : frame) (v_admininstr'
: (list admininstr)), (Step (config__ (state__ v_s v_f) v_admininstr)
(config__ (state__ v_s' v_f') v_admininstr')))).

↪→

↪→

↪→

↪→

↪→

Proof. Admitted.

(Progress)∀s, f, instr∗, t?.⊢ s; f ; instr∗ : t? ⇒
terminal_form(instr∗) ∨ ∃s′, f ′, instr′∗.s; f ; instr∗ ↪→ s′; f ′; instr′∗

Theorem (Progress)
For all s, f , instr∗, t?, if instr∗ is valid with type t? under the context f and the store s, then instr∗
is in terminal form or there exists s′, f ′, instr′∗ such that ((s, f), instr∗) steps to ((s′, f ′), instr′∗)
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Project
Template Mechanism in DSL
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Contributions
l Progress Proof
l Decidable Equality Proofs
l First-Order Logic Extension in DSL
l TemplateMechanism in DSL
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Motivation
Proofs tend to be lengthy (about 2000-3000 lines).

Long proofs should be extracted into auxiliary lemmas.
e.g. Individual cases, induction steps and inversion lemmas.

l Enhances readability and maintainability.
l Enforces finer details of proof structure across theorem provers.

But the statements of these lemmas can be quite repetitive!
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Scope
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Design
Auxiliary lemmaswithout template mechanism:

lemma Step_pure__preserves_nop = forall (s, C, ft)
@(Admin_instrs_ok: s; C |- NOP : ft) =>
@(Step-pure: NOP ~> eps) =>
@(Admin_instrs_ok: s; C |- eps : ft)

lemma Step_pure__preserves_local_tee = forall (s, C, ft, val, x)
@(Admin instrs_ok: s; C |- val (LOCAL.TEE x) : ft) =>
@(Step-pure: val (LOCAL.TEE x) ~> val val (LOCAL.SET x)) =>
@(Admin_instrs_ok: s; C |- val val (LOCAL.SET x) : ft)
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Design
Auxiliary lemmaswith template mechanism:

template
lemma Step_pure__preserves =

forall (s, C, ft, {{ ...relations.Step_pure.rules.*.freevars }})
@(Admin_instrs_ok: s; C |- {{ relations.Step_pure.rules.*.before }} : ft) =>
@(Step_pure: {{ relations.Step_pure.rules.*.before }} ~>

{{ relations.Step_pure.rules.*.after }}) =>
{{ relations.Step_pure.rules.*.premises }} =>
@(Admin_instrs_ok: s; C |- {{ relations.Step_pure.rules.*.after }} : ft)
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Results
Produced by Coq backend:

Lemma Step_pure__preserves__nop : forall (v_ft : functype) (v_C : context) (v_s :
store), ((Admin_instrs_ok v_s v_C [(admininstr__NOP )] v_ft) -> ((Step_pure
[(admininstr__NOP )] []) -> (Admin_instrs_ok v_s v_C [] v_ft))).

↪→

↪→

Proof. Admitted.

Lemma Step_pure__preserves__local_tee : forall (v_x : idx) (v_val : val) (v_ft :
functype) (v_C : context) (v_s : store), ((Admin_instrs_ok v_s v_C [(v_val :
admininstr);(admininstr__LOCAL_TEE v_x)] v_ft) -> ((Step_pure [(v_val :
admininstr);(admininstr__LOCAL_TEE v_x)] [(v_val : admininstr);(v_val :
admininstr);(admininstr__LOCAL_SET v_x)]) -> (Admin_instrs_ok v_s v_C [(v_val
: admininstr);(v_val : admininstr);(admininstr__LOCAL_SET v_x)] v_ft))).

↪→

↪→

↪→

↪→

↪→

Proof. Admitted.
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Evaluation
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Progress Proof
Key strengths:

Identified key errors in the DSL [YSL+25].

l Not detected by the reference interpreter nor the preservation proof in SpecTec!
l Highlights the importance of developing both proofs in this project.

Identified key issues in IL2Rocq [Cup24].

l Handling of conjunction of premises
l Handling of iteration dimensions
l Translation of list slicing notations

Some lemmas were reformulated from scratch (not just a direct porting process).
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Progress Proof
Consistent use of SSReflect syntaxes.

l Enhances readability and maintainability.
l WasmCert-Rocq contains a mixture of both Rocq and SSReflect syntaxes.
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Progress Proof
Future work:

Pending tasks for Wasmmechanisation:

l Update the preservation proof to accommodate the changes in the DSL/IL2Coq.
l Upgrade the proofs to Wasm 2.0 [Wor22a].
l Mechanisation of numerics and module instantiation [Wor22a].
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First-Order Logic Extension in DSL
Key strengths:

l Backwards compatible/minimally intrusive design.
l Correctness confirmed through visual comparison andmigration of proofs.

Room for improvements:

l Support quantification of variables of family types.
l Support updating theorem statements iteratively.
l The @ symbol is currently required for disambiguation in the LR(1) grammar.
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Template Mechanism in DSL
Key strengths:

l Backwards compatible/minimally intrusive design.
l Correctness confirmed through visual comparison andmigration of proofs.
l Designed as a generic mechanism.
l Allows quantification of free variables in the substituted expressions.

Room for improvements:

l Handle name conflicts with free variables in the substituted expressions.
l Formalise the process of template expansion.
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Conclusion
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Contributions
l Progress Proof
l Decidable Equality Proofs
l First-Order Logic Extension in DSL
l TemplateMechanism in DSL
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Contributions
These are all interconnected (not random)!

l Progress Proof
↓ Identified areas of improvement in SpecTec/IL2Rocq

l Decidable Equality Proofs
↓ Required as part of Coq translation

l First-Order Logic Extension in DSL
↓ Required to specify template definitions

l TemplateMechanism in DSL
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Conclusion
Challenges overcome in this project:

l Lots of background material (e.g. Rocq, SSReflect).
l Lots of code reading (e.g. WasmCert-Rocq, SpecTec, IL2Coq).
l Lots of proofs and coding (e.g. frontend, middlends, backends in SpecTec).
l Exploring various design choices for Lemmagen.

Lemmagen only serves as a proof of concept at the moment.

But the reactions have been positive so far!
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SpecTec Highlight
For those having a hard time reading the DSL
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Errata I
Minor corrections made to the report since its submission:

Location Error Correction
p.32-33 Inappropriate use of repeat tactical in Fig-

ures 3.26 and 3.27
Replaced with do ? tactical to match
SSReflect-native style

p.30, par 5, line 2 Inaccurate description of the proof in Figure
3.24

Clarified that the proof proceeds by estab-
lishing the Config_sound co-recursively

p.65, par 3, line 2 Unclear discussion of the limitation imposed
on iterative proof development

Clarified that this limitation is particularly rel-
evant due to frequent updates

p.21, par.3 Missing description of the modifications to
the Step/ctxt-frame rule

Clarified that this rule has been modified to
allow changes in the frame state f
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