
MEng Individual Project
Lemmagen: Extending the WebAssembly Specification Toolchain
for Theorem Provers

Taichi Maeda
Diego Cupello
Rao Xiaojia
Philippa Gardner
ConradWatt

June 25, 2025

Background

Imperial College London MEng Individual Project 2/52

WebAssembly
WebAssembly (Wasm) is a low-level bytecode language [HRS+17].

l Runs on the Web for client and server applications.
l Compilation target for major programming languages.
l Rapidly evolving with rising industry adoption.

Imperial College London MEng Individual Project 3/52

WebAssembly
Wasm is characterised by its strong formalism [Ros25].

Imperial College London MEng Individual Project 4/52

WebAssembly
Wasm even includes soundness theorems in its specification [Wor22a]:

Imperial College London MEng Individual Project 5/52

WasmCert
This formalism enables a precisemechanisation of Wasm.

WasmCert-Rocq and WasmCert-Isabelle provide
a complete mechanisation of Wasm in Rocq and Isabelle/HOL [WRPP+21].

Inductive be_typing : t_context -> seq basic_instruction -> function_type -> Prop :=
| bet_const : forall C v, be_typing C [::BI_const v] (Tf [::] [::typeof v])
| bet_unop : forall C t op,

unop_type_agree t op -> be_typing C [::BI_unop t op] (Tf [::t] [::t])
| bet_binop : forall C t op,

binop_type_agree t op -> be_typing C [::BI_binop t op] (Tf [::t; t] [::t])
...

Imperial College London MEng Individual Project 6/52

Problem
Formal rules need to be translated into multiple formats.

l Declarative representations in LATEX format
l Algorithmic representations in prose format
l Reference interpreter in OCaml
l Test suite in .wast format
l Mechanised definitions in Coq

Manual translation is just too tedious!

l Prone to human error.
l Not scalable as the Wasm specification continues to grow.

Imperial College London MEng Individual Project 7/52

SpecTec
SpecTec DSL serves as a “single source of truth” from which key artefacts can be
auto-generated [YSL+24].

Not limited to Wasm (but some backends are specialised).

Wasm 3.0 specification will be produced with SpecTec [Ros25]!

Imperial College London MEng Individual Project 8/52

SpecTec

Imperial College London MEng Individual Project 9/52

IL2Rocq
IL2Rocq is the work of Diego, a master’s student from last year [Cup24].

Major achievements by Diego:

l Implemented a SpecTec backend for Rocq mechanised definitions
l Completed the preservation proof using auto-translated Rocq definitions!

Imperial College London MEng Individual Project 10/52

Timeline
1. 2017~: Wasm 1.0 draft is released [HRS+17]

2. 2018~: WasmCert is developed [Wat18, WRPP+21]

3. 2019~: Wasm 1.0 is officially released [Wor19]

4. 2024~: IL2Rocq is developed [Cup24]

5. 2024: Preservation proof is completed [Cup24]

6. 2025: Progress proof is completed (NEW)
7. 2025: Lemmagen is developed (NEW)

Imperial College London MEng Individual Project 11/52

Timeline
1. 2017~: Wasm 1.0 draft is released [HRS+17]

2. 2018~: WasmCert is developed [Wat18, WRPP+21]

3. 2019~: Wasm 1.0 is officially released [Wor19]

4. 2024~: IL2Rocq is developed [Cup24]

5. 2024: Preservation proof is completed [Cup24]

6. 2025: Progress proof is completed (NEW)
7. 2025: Lemmagen is developed (NEW)

Imperial College London MEng Individual Project 11/52

Timeline
1. 2017~: Wasm 1.0 draft is released [HRS+17]

2. 2018~: WasmCert is developed [Wat18, WRPP+21]

3. 2019~: Wasm 1.0 is officially released [Wor19]

4. 2024~: IL2Rocq is developed [Cup24]

5. 2024: Preservation proof is completed [Cup24]

6. 2025: Progress proof is completed (NEW)
7. 2025: Lemmagen is developed (NEW)

Imperial College London MEng Individual Project 11/52

Timeline
1. 2017~: Wasm 1.0 draft is released [HRS+17]

2. 2018~: WasmCert is developed [Wat18, WRPP+21]

3. 2019~: Wasm 1.0 is officially released [Wor19]

4. 2024~: IL2Rocq is developed [Cup24]

5. 2024: Preservation proof is completed [Cup24]

6. 2025: Progress proof is completed (NEW)
7. 2025: Lemmagen is developed (NEW)

Imperial College London MEng Individual Project 11/52

Timeline
1. 2017~: Wasm 1.0 draft is released [HRS+17]

2. 2018~: WasmCert is developed [Wat18, WRPP+21]

3. 2019~: Wasm 1.0 is officially released [Wor19]

4. 2024~: IL2Rocq is developed [Cup24]

5. 2024: Preservation proof is completed [Cup24]

6. 2025: Progress proof is completed (NEW)
7. 2025: Lemmagen is developed (NEW)

Imperial College London MEng Individual Project 11/52

Project

Imperial College London MEng Individual Project 12/52

Contributions
l Progress Proof
l Decidable Equality Proofs
l First-Order Logic Extension in DSL
l TemplateMechanism in DSL

Imperial College London MEng Individual Project 13/52

Project
Progress Proof

Imperial College London MEng Individual Project 14/52

Contributions
l Progress Proof
l Decidable Equality Proofs
l First-Order Logic Extension in DSL
l TemplateMechanism in DSL

Imperial College London MEng Individual Project 15/52

Progress Proof
Continuation of Diego’s work on IL2Coq and the preservation proof [Cup24].

l Proof bymutual induction on the structures of 2-3 typing relations.
l Accommodates key differences between the SpecTec DSL and WasmCert-Rocq.

Theorem t_progress :
forall s f es ts,
Config_ok (config__ (state__ s f) es) ts ->
terminal_form es \/
exists s' f' es',
Step (config__ (state__ s f) es) (config__ (state__ s' f') es').

Imperial College London MEng Individual Project 16/52

Progress Proof
Continuation of Diego’s work on IL2Coq and the preservation proof [Cup24].

l Proof bymutual induction on the structures of 2-3 typing relations.
l Accommodates key differences between the SpecTec DSL and WasmCert-Rocq.

Lemma t_progress_e: forall s C C' f vcs es tf ts1 ts2 lab ret,
Admin_instrs_ok s C es tf ->
tf = functype__ ts1 ts2 ->
C = (upd_local_label_return C' (map typeof f.(frame__LOCALS)) lab ret) ->
Module_instance_ok s f.(frame__MODULE) C' ->
map typeof vcs = ts1 ->
Store_ok s ->
not_lf_br es ->
not_lf_return es ->
terminal_form (list__val__admininstr vcs ++ es) \/
exists s' f' es', Step (config__ (state__ s f) (list__val__admininstr vcs ++ es))

(config__ (state__ s' f') es').

Imperial College London MEng Individual Project 16/52

Modifications to DSL
Key errors in the DSL found during the proof development
(mostly acknowledged by Andreas and Conrad):

+rule Step/ctxt-seq:
+ z; val* admininstr* admininstr''* ~> z'; val* admininstr'* admininstr''*
+ -- Step: z; admininstr* ~> z'; admininstr'*

rule Step/ctxt-frame:
- s; f; (FRAME_ n `{f'} admininstr*) ~> s'; f; (FRAME_ n `{f'} admininstr'*)
- -- Step: s; f'; admininstr* ~> s'; f'; admininstr'*
+ s; f; (FRAME_ n `{f'} admininstr*) ~> s'; f; (FRAME_ n `{f''} admininstr'*)
+ -- Step: s; f'; admininstr* ~> s'; f''; admininstr'*

Imperial College London MEng Individual Project 17/52

Modifications to DSL

Imperial College London MEng Individual Project 18/52

Project
Decidable Equality Proofs

Imperial College London MEng Individual Project 19/52

Contributions
l Progress Proof
l Decidable Equality Proofs
l First-Order Logic Extension in DSL
l TemplateMechanism in DSL

Imperial College London MEng Individual Project 20/52

Motivation
Decidable equality is essential for case analysis in Rocq proofs.

l In Rocq proofs, we must show x = y ∨ x ̸= y explicitly (constructive logic).
l In hand-written proofs, showing x = y ∨ x ̸= y is not necessary (classical logic).

Manually proven for each data type in the progress proof.

Automated by extending IL2Rocq.

Imperial College London MEng Individual Project 21/52

Decidable Equality Proofs
Based on WasmCert-Rocq’s approach [BGP+25].

l Fully automated proofs for all data types.
l Proofs are significantly simplified compared to WasmCert-Rocq (about 100 to 10 lines).

Ltac rect'_build_projection proj rect :=
let t :=

lazymatch type of rect with
| forall P : ?t -> Type, _ => t
end in

let g := rect'_type_projection proj rect in
refine (_ : g);
...

Definition administrative_instruction_eq_dec : forall e1 e2 :
administrative_instruction,↪→

{e1 = e2} + {e1 <> e2}.
Proof. decidable_equality_using

administrative_instruction_rect'. Defined.↪→

Imperial College London MEng Individual Project 22/52

Decidable Equality Proofs
Based on WasmCert-Rocq’s approach [BGP+25].

l Fully automated proofs for all data types.
l Proofs are significantly simplified compared to WasmCert-Rocq (about 100 to 10 lines).

Create HintDb eq_dec_db.

Ltac decidable_equality_step :=
do [by eauto with eq_dec_db | decide equality].

Fixpoint admininstr_eq_dec (v1 v2 : admininstr) {struct v1} :
{v1 = v2} + {v1 <> v2}.

Proof. decide equality; do ? decidable_equality_step. Defined.

Imperial College London MEng Individual Project 22/52

Project
First-Order Logic Extension in DSL

Imperial College London MEng Individual Project 23/52

Contributions
l Progress Proof
l Decidable Equality Proofs
l First-Order Logic Extension in DSL
l TemplateMechanism in DSL

Imperial College London MEng Individual Project 24/52

Motivation
More theorems are expected in the Wasm 3.0 draft [Wor22b]:

l Principal types
l Type lattice
l Properties on compositionality of instruction sequences

Makes sense to specify theorems in the DSL as a “single source of truth” [YSL+24]:

l Enforces uniform style of theorem statements across theorem provers.
l Allows translation of theorems into LATEX and prose formats.
l Guarantees that theorems in the specification precisely match the mechanised definitions.

Imperial College London MEng Individual Project 25/52

Scope

Imperial College London MEng Individual Project 26/52

Design
DSL syntax extensions and examples:

def ::=
...
"theorem" thmid ":" exp hint*
"lemma" thmid ":" exp hint*
"theorem" thmid hint* "=" exp
"lemma" thmid hint* "=" exp

exp ::=
...
"@" "(" relid ":" exp ")"
"@" "(" exp ")" iter*
forall args exp
exists args exp

theorem t_progress =
forall (s, f, admininstr*, t?)
@(Config_ok: |- s; f; admininstr* : t?) =>
$terminal__form(admininstr*) \/
exists (s', f', admininstr'*)
@(Step: s; f; admininstr* ~> s'; f'; admininstr'*)

Imperial College London MEng Individual Project 27/52

Results
Produced by Coq, LATEX and prose backends:

Theorem t_progress : forall (v_s : store) (v_f : frame) (v_admininstr :
(list admininstr)) (v_t : (option valtype)), ((Config_ok (config__
(state__ v_s v_f) v_admininstr) v_t) -> ((fun_terminal_form
v_admininstr) \/ exists (v_s' : store) (v_f' : frame) (v_admininstr'
: (list admininstr)), (Step (config__ (state__ v_s v_f) v_admininstr)
(config__ (state__ v_s' v_f') v_admininstr')))).

↪→

↪→

↪→

↪→

↪→

Proof. Admitted.

(Progress)∀s, f, instr∗, t?.⊢ s; f ; instr∗ : t? ⇒
terminal_form(instr∗) ∨ ∃s′, f ′, instr′∗.s; f ; instr∗ ↪→ s′; f ′; instr′∗

Theorem (Progress)
For all s, f , instr∗, t?, if instr∗ is valid with type t? under the context f and the store s, then instr∗
is in terminal form or there exists s′, f ′, instr′∗ such that ((s, f), instr∗) steps to ((s′, f ′), instr′∗)

Imperial College London MEng Individual Project 28/52

Project
Template Mechanism in DSL

Imperial College London MEng Individual Project 29/52

Contributions
l Progress Proof
l Decidable Equality Proofs
l First-Order Logic Extension in DSL
l TemplateMechanism in DSL

Imperial College London MEng Individual Project 30/52

Motivation
Proofs tend to be lengthy (about 2000-3000 lines).

Long proofs should be extracted into auxiliary lemmas.
e.g. Individual cases, induction steps and inversion lemmas.

l Enhances readability and maintainability.
l Enforces finer details of proof structure across theorem provers.

But the statements of these lemmas can be quite repetitive!

Imperial College London MEng Individual Project 31/52

Scope

Imperial College London MEng Individual Project 32/52

Design
Auxiliary lemmaswithout template mechanism:

lemma Step_pure__preserves_nop = forall (s, C, ft)
@(Admin_instrs_ok: s; C |- NOP : ft) =>
@(Step-pure: NOP ~> eps) =>
@(Admin_instrs_ok: s; C |- eps : ft)

lemma Step_pure__preserves_local_tee = forall (s, C, ft, val, x)
@(Admin instrs_ok: s; C |- val (LOCAL.TEE x) : ft) =>
@(Step-pure: val (LOCAL.TEE x) ~> val val (LOCAL.SET x)) =>
@(Admin_instrs_ok: s; C |- val val (LOCAL.SET x) : ft)

Imperial College London MEng Individual Project 33/52

Design
Auxiliary lemmaswith template mechanism:

template
lemma Step_pure__preserves =

forall (s, C, ft, {{ ...relations.Step_pure.rules.*.freevars }})
@(Admin_instrs_ok: s; C |- {{ relations.Step_pure.rules.*.before }} : ft) =>
@(Step_pure: {{ relations.Step_pure.rules.*.before }} ~>

{{ relations.Step_pure.rules.*.after }}) =>
{{ relations.Step_pure.rules.*.premises }} =>
@(Admin_instrs_ok: s; C |- {{ relations.Step_pure.rules.*.after }} : ft)

Imperial College London MEng Individual Project 34/52

Results
Produced by Coq backend:

Lemma Step_pure__preserves__nop : forall (v_ft : functype) (v_C : context) (v_s :
store), ((Admin_instrs_ok v_s v_C [(admininstr__NOP)] v_ft) -> ((Step_pure
[(admininstr__NOP)] []) -> (Admin_instrs_ok v_s v_C [] v_ft))).

↪→

↪→

Proof. Admitted.

Lemma Step_pure__preserves__local_tee : forall (v_x : idx) (v_val : val) (v_ft :
functype) (v_C : context) (v_s : store), ((Admin_instrs_ok v_s v_C [(v_val :
admininstr);(admininstr__LOCAL_TEE v_x)] v_ft) -> ((Step_pure [(v_val :
admininstr);(admininstr__LOCAL_TEE v_x)] [(v_val : admininstr);(v_val :
admininstr);(admininstr__LOCAL_SET v_x)]) -> (Admin_instrs_ok v_s v_C [(v_val
: admininstr);(v_val : admininstr);(admininstr__LOCAL_SET v_x)] v_ft))).

↪→

↪→

↪→

↪→

↪→

Proof. Admitted.

Imperial College London MEng Individual Project 35/52

Evaluation

Imperial College London MEng Individual Project 36/52

Progress Proof
Key strengths:

Identified key errors in the DSL [YSL+25].

l Not detected by the reference interpreter nor the preservation proof in SpecTec!
l Highlights the importance of developing both proofs in this project.

Identified key issues in IL2Rocq [Cup24].

l Handling of conjunction of premises
l Handling of iteration dimensions
l Translation of list slicing notations

Some lemmas were reformulated from scratch (not just a direct porting process).

Imperial College London MEng Individual Project 37/52

Progress Proof
Consistent use of SSReflect syntaxes.

l Enhances readability and maintainability.
l WasmCert-Rocq contains a mixture of both Rocq and SSReflect syntaxes.

Imperial College London MEng Individual Project 38/52

Progress Proof
Future work:

Pending tasks for Wasmmechanisation:

l Update the preservation proof to accommodate the changes in the DSL/IL2Coq.
l Upgrade the proofs to Wasm 2.0 [Wor22a].
l Mechanisation of numerics and module instantiation [Wor22a].

Imperial College London MEng Individual Project 39/52

First-Order Logic Extension in DSL
Key strengths:

l Backwards compatible/minimally intrusive design.
l Correctness confirmed through visual comparison andmigration of proofs.

Room for improvements:

l Support quantification of variables of family types.
l Support updating theorem statements iteratively.
l The @ symbol is currently required for disambiguation in the LR(1) grammar.

Imperial College London MEng Individual Project 40/52

Template Mechanism in DSL
Key strengths:

l Backwards compatible/minimally intrusive design.
l Correctness confirmed through visual comparison andmigration of proofs.
l Designed as a generic mechanism.
l Allows quantification of free variables in the substituted expressions.

Room for improvements:

l Handle name conflicts with free variables in the substituted expressions.
l Formalise the process of template expansion.

Imperial College London MEng Individual Project 41/52

Conclusion

Imperial College London MEng Individual Project 42/52

Contributions
l Progress Proof
l Decidable Equality Proofs
l First-Order Logic Extension in DSL
l TemplateMechanism in DSL

Imperial College London MEng Individual Project 43/52

Contributions
These are all interconnected (not random)!

l Progress Proof
↓ Identified areas of improvement in SpecTec/IL2Rocq

l Decidable Equality Proofs
↓ Required as part of Coq translation

l First-Order Logic Extension in DSL
↓ Required to specify template definitions

l TemplateMechanism in DSL

Imperial College London MEng Individual Project 44/52

Conclusion
Challenges overcome in this project:

l Lots of background material (e.g. Rocq, SSReflect).
l Lots of code reading (e.g. WasmCert-Rocq, SpecTec, IL2Coq).
l Lots of proofs and coding (e.g. frontend, middlends, backends in SpecTec).
l Exploring various design choices for Lemmagen.

Lemmagen only serves as a proof of concept at the moment.

But the reactions have been positive so far!

Imperial College London MEng Individual Project 45/52

Thank You

MEng Individual Project

June 25, 2025

SpecTec Highlight
For those having a hard time reading the DSL

Imperial College London MEng Individual Project 47/52

Errata I
Minor corrections made to the report since its submission:

Location Error Correction
p.32-33 Inappropriate use of repeat tactical in Fig-

ures 3.26 and 3.27
Replaced with do ? tactical to match
SSReflect-native style

p.30, par 5, line 2 Inaccurate description of the proof in Figure
3.24

Clarified that the proof proceeds by estab-
lishing the Config_sound co-recursively

p.65, par 3, line 2 Unclear discussion of the limitation imposed
on iterative proof development

Clarified that this limitation is particularly rel-
evant due to frequent updates

p.21, par.3 Missing description of the modifications to
the Step/ctxt-frame rule

Clarified that this rule has been modified to
allow changes in the frame state f

Imperial College London MEng Individual Project 48/52

References I
M. Bodin, P. Gardner, J. Pichon, C. Watt, and X. Rao.
Wasmcert-coq.
GitHub repository, 2025.
Last accessed: 20 January 2025.

Diego Cupello.
Il2coq: Automatic translation of inductive logic programming concepts into coq.
2024.
Accessed: 2025-01-13.
Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan Gohman,
Luke Wagner, Alon Zakai, and JF Bastien.
Bringing the web up to speed with webassembly.
SIGPLAN Not., 52(6):185–200, June 2017.

Imperial College London MEng Individual Project 49/52

References II
Andreas Rossberg.
Spectec has been adopted, March 2025.
Accessed: 2025-06-07.
Conrad Watt.
Mechanising and verifying the webassembly specification.
In Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2018, page 53–65, New York, NY, USA, 2018. Association for Computing Machinery.

World Wide Web Consortium (W3C).
Webassembly specification release 1.0, 2019.
Last accessed: 20 January 2025.

World Wide Web Consortium (W3C).
Webassembly specification release 2.0, 2022.
Last accessed: 20 January 2025.

Imperial College London MEng Individual Project 50/52

References III
World Wide Web Consortium (W3C).
Webassembly specification release 3.0 (draft 2025-05-15), 2022.
Last accessed: 20 January 2025.

Conrad Watt, Xiaojia Rao, Jean Pichon-Pharabod, Martin Bodin, and Philippa Gardner.
Two mechanisations of webassembly 1.0.
2021.
Dongjun Youn, Wonho Shin, Jaehyun Lee, Sukyoung Ryu, Joachim Breitner, Philippa Gardner,
Sam Lindley, Matija Pretnar, Xiaojia Rao, Conrad Watt, and Andreas Rossberg.
Bringing the webassembly standard up to speed with spectec.
Proc. ACM Program. Lang., 8(PLDI), June 2024.

Imperial College London MEng Individual Project 51/52

References IV
Dongjun Youn, Wonho Shin, Jaehyun Lee, Sukyoung Ryu, Joachim Breitner, Philippa Gardner,
Sam Lindley, Matija Pretnar, Xiaojia Rao, Conrad Watt, and Andreas Rossberg.
Spectec.
GitHub repository, 2025.
Last accessed: 20 January 2025.

Imperial College London MEng Individual Project 52/52

	Background
	Project
	Progress Proof
	Decidable Equality Proofs
	First-Order Logic Extension in DSL
	Template Mechanism in DSL

	Evaluation
	Conclusion

