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Abstract

WebAssembly (Wasm) is a virtual instruction set architecture (ISA) introduced in 2017 by
Andreas Rossberg as a low-level bytecode language [HRS+17]. One of the defining features
of Wasm is its formalism, which has been fundamental to its design process [Ros25].

This formalism facilitates the mechanisation of Wasm, as demonstrated by pioneering ef-
forts such as WasmCert, which established the soundness properties of the language [WRPP+21].
However, as the Wasm specification continues to expand, maintaining these mechanisa-
tions manually has become increasingly challenging.

To address this problem, SpecTec was developed to streamline the Wasm specification
process [YSL+24]. It introduces a domain-specific language (DSL) from which artefacts
such as LATEX documentation, prose specifications, fuzzer test suites, a reference interpreter
in OCaml and even mechanised definitions in Coq (Rocq) can be auto-generated.

The mechanised proof of the preservation property in Wasm has been successfully ported
from WasmCert to SpecTec, using definitions auto-translated from the SpecTec DSL [Cup24].
This builds upon prior work involving IL2Coq, a component of the SpecTec toolchain re-
sponsible for producing mechanised definitions in Coq (Rocq).

This project extends this work by developing a mechanised proof of the progress property,
which, combined with the preservation property, establishes the soundness of Wasm. The
development of the progress proof identified several key areas for improvement, which
were subsequently addressed by introducing new features to the SpecTec DSL, including
first-order logic and template constructs. These contributions highlight potential future
directions for the evolution of the SpecTec toolchain and the design process of the We-
bAssembly language as a whole.
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Chapter 1

Introduction

1.1 Motivation
WebAssembly (Wasm) is a virtual instruction set architecture (ISA) introduced in 2017 by
Andreas Rossberg as a low-level bytecode language. Currently, it serves as a compilation
target for languages like C, C++ and Rust, enabling these languages to run efficiently and
securely across platforms [HRS+17][Wor22a].

Wasm is designed with the following goals [HRS+17]:

• Safety: Wasm ensures the safe execution of portable low-level code, providing
stronger guarantees than traditional managed language runtimes. The safety on
the Web is crucial as browsers often execute code from untrusted sources.

• Performance: Wasm serves as a compilation target for highly optimised low-level
code, minimising the performance overhead typically associated with managed lan-
guages, especially those using garbage collection.

• Portability: Wasm is designed as a virtual ISA rather than a physical one. This
design ensures portability, enabling Web applications to run consistently across dif-
ferent browsers and platforms.

• Compactness: Wasm’s compact binary format reduces load times, saves bandwidth
and enhances responsiveness when transmitted over the network.

Wasm has been rigorously standardised by the W3C [Wor19]. Unlike other bytecode
languages like Java bytecode [Ora23], Wasm’s specification includes formal semantics and
proven theorems for its soundness, making it one of the first industrial-strength bytecode
languages designed with formal semantics [HRS+17].

This formalism enables the mechanisation of Wasm. The initial mechanisation in Isabelle
was developed by Conrad in 2018 [Wat18], focusing on the draft version of Wasm. Building
on this work, Conrad and Rao completed the full mechanisation of Wasm 1.0 in Isabelle
and Coq, known as WasmCert-Isabelle and WasmCert-Coq [WRPP+21]. These mechani-
sations provide rigorous proofs of the formal semantics of the language, ensuring alignment
with its intended behaviour and soundness properties.

In contrast to the advantages of this formalism, manual maintenance of the Wasm spec-
ification has proven labour-intensive and prone to errors. Translating formal rules into
both LATEX and prose formats, while simultaneously producing other artefacts, compli-
cates code reviews and increases the risk of inconsistencies. As Wasm rapidly evolves with
new features, this manual process becomes unsustainable [YSL+24].
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To address these challenges, the Wasm community introduced SpecTec, a domain-specific
language (DSL) that serves as a “single source of truth” for the Wasm specification [YSL+24].
SpecTec automates the generation of key artefacts, including formal specifications in
LATEX and prose formats, pseudocode in reStructuredText and a reference interpreter
in OCaml.

One of the long-term goals of SpecTec is to automate mechanisation and proof generation
in theorem provers like Coq and Isabelle. An initial step towards this goal is IL2Coq,
developed by Diego [Cup24], a SpecTec backend that translates the intermediate language
(IL) of SpecTec into inductive definitions in Coq. IL2Coq has already demonstrated its
capability by completing the mechanised proof of the preservation property using the
auto-translated definitions [Cup24].

The next phase of this work focuses on completing the progress proof, thereby establishing
the soundness of the WebAssembly language using the auto-translated definitions. The
development of the progress proof will help identify limitations of the SpecTec toolchain,
which will guide a series of improvements to be made in this project, collectively referred
to as “Lemmagen”.

1.2 Contributions
This project makes the following contributions:

• The mechanised proof of the progress property using the definitions auto-translated
from the SpecTec DSL, which, when combined with Diego’s previous work on the
preservation proof, establishes the soundness of Wasm. The development of the
proof identified key inconsistencies in the DSL that had previously gone undetected
by both the SpecTec toolchain and the preservation proof, which were subsequently
resolved. Additionally, an experimental attempt was made to mechanise the proof
of a weak form of the soundness property.

• The auto-generation of decidable equality proofs, in order to automate the definition
of SSReflect’s EqType instances for data types produced by IL2Coq. The integration
with IL2Coq and additional Coq techniques led to a significant simplification of these
decidable equality proofs in comparison to WasmCert-Coq.

• The extension of the SpecTec DSL and its downstream translation with first-order
logic constructs, enabling specification of theorem statements, auxiliary lemmas and
predicates as part of the “single source of truth”. The Coq, LATEX, prose and splice
backends were subsequently integrated to support automatic generation of theorem
statements in their corresponding formats.

• The introduction of a template mechanism in the SpecTec DSL and its downstream
translation, which enables finer specification of the proof structure by abstracting
auxiliary lemmas through templates. As part of the template middlend, a simulta-
neous tree/trie-traversal algorithm was designed to handle the expansion of template
definitions containing nested wildcards and Cartesian products of wildcards.
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Chapter 2

Background

2.1 Language Standardisation

Standardisation of a programming language refers to the process of formally defining the
syntax and semantics of the language. Notable examples of such standardisation efforts
include the ANSI standards for C [ISO11], the JVM specification for Java [Ora23] and the
formal semantics outlined in the Wasm specification [Wor22a].

This standardisation enables the validation of the syntax and semantics of a language
across its various implementations, including compilers, interpreters and other tools that
interact with the language. It ensures that the behaviour of the language remains con-
sistent across platforms and that undefined or unspecified behaviour [cpp25] is elimi-
nated.

2.2 Software Mechanisation

In the context of software validation, mechanisation refers to the process of formally
representing and automating the verification of the semantics of a language, ensuring
that its behaviour aligns with the formal specification. This typically involves translating
the high-level behaviours of the language into a formal framework, often using a proof
assistant such as Coq [Inr25a] and Isabelle [Isa].

Mechanisation is highly valuable because it significantly reduces the risk of errors in soft-
ware validation. Manual verification of complex systems is not only time-consuming but
also prone to mistakes and inconsistencies. Human-readable proofs can often overlook
edge cases or misinterpret details, while automated mechanisms can exhaustively check all
possible scenarios. This is particularly important in safety-critical systems, such as aircraft
control software, where even small bugs can lead to catastrophic failures [Sou14]. With
software mechanisation, we can ensure correctness with a level of precision that would be
nearly impossible to achieve through manual testing, thereby offering strong guarantees
about the safety and reliability of the system.

2.3 Proof Assistants

A proof assistant is a software tool that helps users construct mathematical proofs by
providing a framework for formalising and certifying statements. These tools are typically
based on functional programming languages and allow users to express their reasoning in
a formal manner.
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Proof assistants generally rely on formal systems such as dependent type theory [nLaa]
or higher-order logic (HOL) [nLab]. Dependent type-based proof assistants are based on
types that may be indexed by values, while HOL-based systems use a logical framework
based on higher-order logic to construct proofs.

Several proof assistants are widely used, each with its own strengths. Some of the most
well-known proof assistants include:

• Coq: A dependent type-based proof assistant that allows for the formalisation of
mathematical theories and the development of certified software [Inr25a]. Coq is
built on constructive logic but can be extended to classical logic by introducing
consistent axioms [PdAC+25].

• Isabelle: A HOL-based proof assistant known for its flexibility and extensive library
of pre-built theorems [Isa]. Isabelle offers strong for proof automation such as the
sledgehammer tactic [BDP24].

• Lean: A dependent type-based proof assistant designed for both academic research
and practical software verification [Lea]. Lean is taught in the Department of Math-
ematics at Imperial College London [Buz].

Proof assistants have been applied to a variety of well-known projects, demonstrating their
ability to ensure correctness in both mathematics and software development. Two notable
examples include:

• Four Colour Theorem: One of the most famous uses of proof assistants is the
verification of the Four Colour Theorem [Gon08]. This theorem, which states that
any map can be coloured with no more than four colours such that no two adjacent
regions share the same colour, was proven using the Coq proof assistant [Gon08].

• CompCert: Another prominent example is the CompCert project, which uses the
Coq proof assistant to implement a formally verified C compiler [Ler09]. The com-
piler is fully specified, programmed and proven within Coq, ensuring that the gen-
erated machine code adheres to the semantics of the C programming language.

2.4 Coq (Rocq)
Coq (Rocq) is a proof assistant designed for the formalisation of mathematical proofs
and the development of certified software [Inr25a]. It consists of three main languages —
Vernacular, Gallina and Ltac.

Vernacular is the command language for interacting with the proof assistant [Inr18d]. It
allows users to issue commands for defining variables, stating theorems and constructing
proofs, in order to guide the internal proof state.

Gallina is the functional programming language used for defining theorems, functions
and data structures [Inr18a]. It operates within the dependent type system and supports
inductive types, recursion and higher-order functions, making it suitable for formalising
mathematical theories.

Ltac is the tactical language for proof construction [Inr18c]. It includes tactics such as
apply and induction, which are used in proof mode to construct proofs interactively.
Tactics may employ backward reasoning to manipulate goals, or forward reasoning to
manipulate hypotheses [Inr21b].

A proof environment in Coq consists of goals and local contexts. A goal represents
the statement to be proven, which may be reduced into smaller subgoals as the proof

7



progresses. A local context contains hypotheses and local definitions available for use in
the proof.

As an example, Figure 2.1 demonstrates the proof of the associativity property for list
concatenation in Coq.

Theorem app_assoc :
forall (T : Type) (l1 l2 l3 : list T),
(l1 ++ l2) ++ l3 = l1 ++ (l2 ++ l3).

Proof.
intros T l1 l2 l3.
induction l1 as [| n l1' IHl1'].
- reflexivity.
- simpl. rewrite -> IHl1'. reflexivity.

Qed.

Figure 2.1: Example of list associativity proof in Coq

The proof proceeds by induction on the list l1. It begins with the intros tactic, which
introduces the variables l1, l2 and l3 into the local context. The induction tactic is
then applied to l1, dividing the proof into two cases: the base case, where l1 is the
empty list (nil), and the inductive step, where l1 is a non-empty list (cons n l1'). In
the base case, the goal is resolved by the reflexivity tactic, which solves the goal by
reflexivity of equality after simplification. In the inductive step, the rewrite tactic is used
to incorporate the inductive hypothesis (IHl1') into the goal.

The core of Coq is its dependent type system, based on the Curry-Howard correspondence,
which establishes a link between logic and computation. In this system, propositions are
treated as types, and proofs as terms inhabiting those types. Therefore, verifying the
validity of a proof is reduced to type-checking the corresponding term within the dependent
type system [PdAC+25].

2.5 SSReflect

SSReflect (Small Scale Reflection) is a powerful extension of Coq that enhances its syntax
and proof development capabilities [Inr18b]. Originally developed for the mechanised
proof of the Four Colour Theorem [Gon08], SSReflect introduces concise yet expressive
constructs designed to facilitate proof development [GR09].

SSReflect offers explicit control over the movement of hypotheses through its bookkeeping
tacticals [Inr18b]. For instance, tactic: a b c moves hypotheses from the local context
to the goal, while tactic=> a b c moves hypotheses from the goal to the local context.
These tacticals offer minimal syntax for managing hypotheses without relying on tactics
like intros at each step.

SSReflect further enhances Ltac by introducing a more flexible syntax. For instance,
tactics such as have no longer require brackets (open syntax) [Inr18b], resulting in more
concise proof. This syntactic improvement makes proofs easier to read and write, thereby
improving the user experience by reducing verbosity.

SSReflect also extends the Gallina syntax. It introduces pattern assignment and pattern
conditional syntax, such as let: (x, (y, z)) := t and if t is Some _ then true ⌋

else false, allowing users to destructure nested patterns directly without relying on
match [Inr18b].
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To structure proofs more effectively, SSReflect provides terminating tacticals such as by
and done [Inr18b]. These tacticals work by ensuring an error is triggered immediately if
the given tactic fails to solve its current goal. This explicitly marks the end of the proof
for each subgoal and improves readability when replaying proofs interactively.

Alongside other features not discussed here, these syntactic and tactical improvements
significantly enhance the clarity, efficiency and maintainability of proofs in Coq.

As an example, Figure 2.2 presents the proof of the same associativity property for list
concatenation in SSReflect, which we previously proved in Figure 2.1.

Theorem app_assoc :
forall (T : Type) (l1 l2 l3 : seq T),
(l1 ++ l2) ++ l3 = l1 ++ (l2 ++ l3).

Proof.
move=> T l1 l2 l3.
elim: l1 => [|n l1' IHl1'] //=. by rewrite IHl1'.

Qed.

Figure 2.2: Example of list associativity proof in SSReflect

This SSReflect proof leverages the bookkeeping tacticals => and : to manage hypotheses. It
also uses the simplification item //= to automatically simplify and solve subgoals generated
by the tactic. In this case, the base case is shown trivially, leaving only the inductive case
to be proven.

2.6 WebAssembly

2.6.1 Concepts

The following outlines key concepts of Wasm that are relevant to this project [Wor22a].

Values (value): Wasm defines only four basic number types (i32, i64, f32 and f64),
all of which are available in common hardware [HRS+17]. Floating point numbers are
represented in IEEE 754 format [IEE19]. Each value type has a corresponding default
value, primarily used to initialise local variables during a function call.

Types (type): Wasm specifies types for values, functions, memories, tables, globals and
external values. These types are checked during validation, instantiation and potentially
at runtime for certain instructions like call_indirect. The limits type defines the minimum
and maximum sizes for a memory or table.

Instructions (instr): Wasm executes instructions within an abstract stack-based machine.
Each instruction performs computations by popping input values from, and pushing output
values to, an implicit operand stack [HRS+17].

Modules (module): Wasm organises static definitions for functions, globals, tables and
memories within a module. A module must define a vector types of all function types
used within it, which are indexed by instructions and other constructs. Modules can also
import definitions from other modules [HRS+17].

Functions (func): In Wasm, each function is declared with a specific function type, which
specifies the sequence of input and output values. Functions may contain recursive calls
but cannot be nested within one another [HRS+17].

Globals (global): In Wasm, each global variable is declared as either mutable or im-
mutable. Globals must have an initialiser, which is a constant expression permitted to
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access only other global variables.

Tables (table): In Wasm, a table stores references to functions and other constructs.
Tables are primarily used for dynamic dispatch via the call_indirect instruction, which
enables features such as virtual functions in C++ [cpp].

Memories (mem): In Wasm, a memory is a contiguous, mutable array of raw bytes
used for data storage. It can be dynamically resized at runtime in units of 64 KiB,
which corresponds to the least common multiple of the minimum page sizes on modern
hardware [HRS+17].

Control Flow: Wasm handles control flow differently from traditional low-level bytecode
languages. Instead of permitting unrestricted jumps, it provides structured control flow
similar to those found in high-level programming languages. This ensures that control
flow cannot introduce irreducible loops, which are difficult to optimise, or misaligned stack
heights at branch points, which would require additional bookkeeping [HRS+17].

Figure 2.3 presents a (contrived) example illustrating the reduction of the loop instruction.
This instruction is reduced to a label instruction, which includes the continuation to be
executed upon exiting the loop.

(f32.const (−1.0)) (loop ([i32] → [i32]) (f32.abs) end)

↪→ label1{loop ([i32] → [i32]) (f32.abs) end} (f32.const (−1.0)) (f32.abs) end

↪→ label1{loop ([i32] → [i32]) (f32.abs) end} (f32.const (+1.0)) end

↪→ (f32.const (+1.0))

Figure 2.3: Example of reduction of control instruction in Wasm

The execution of a Wasm module consists of three phases [Wor22a]:

1. Decoding: This phase parses the Wasm module from its binary format into an
abstract representation used by the validation and execution phases.

2. Validation: This phase ensures the correctness of the Wasm module by verifying
that values, types, instructions and other static definitions are well-formed.

3. Execution: This phase begins with instantiation, which creates a runtime rep-
resentation of the module. It then proceeds to invocation, where the exported
functions of the Wasm module are called by the host environment.

The relevant definitions from the structure, validation and execution sections of the Wasm
2.0 specification can be found in Appendix A.

2.6.2 Validation

Validity is determined using a type system applied to the module’s abstract syntax [Wor22a].
This is specified in terms inference rules, with the premises above the horizontal bar and
the conclusion below.

A context (context) serves as a typing environment that contains all necessary information
required to define the constraints of each judgement [Wor22a]. Notable components of a
context include the following:

• Labels: The labels component represents the stack of result types corresponding
to the surrounding labels. The result type of a label denotes the types of operands
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expected on the stack when exiting the label. This stack of result types is accessed
using a form of de Bruijn index, where index i refers to the i-th innermost label.

• Return: The return component specifies the optional return type of the current
function. It may be absent in cases where no return is permitted, such as within
initialisers of globals.

The following briefly explains key typing judgements [Wor22a]:

Constant Instruction (T-const): A constant instruction is valid with the type [] → [t],
where [t] denotes the type of the value pushed onto the stack.

Numeric Instructions (T-numeric): A unary or binary operation instruction is valid
with types [t] → [t] and [t t] → [t], respectively.

Parametric Instructions (T-parametric): The drop and select instructions are valid
with types [t] → [] and [t t i32] → [t], respectively. These instructions are polymorphic
over the type t [Wor22a].

Variable Instructions (T-variable): A variable instruction is valid if the type of the
variable matches its corresponding entry in the context C. Furthermore, the global.set
instruction requires the variable to be declared as mutable.

Control Instructions (T-control): The nop instruction is valid only with type [] →
[]. The unreachable instruction is valid with type [t∗1] → [t∗2]. These instructions are
polymorphic over any stack type [Wor22a].

The block and loop instructions are typed according to their underlying instruction se-
quences. The notation C, label [t∗2] denotes a record update, where the label component of
the context C is updated by pushing [t∗2] onto the label stack.

The br instruction is valid if the expected result type of the label, specified by the label
index l, matches the types of the topmost values on the stack. The validity of the return
instruction is defined similarly.

Types (T-type): Wasm also validates types, as some composite types may be ill-formed.
For instance, the judgement for the limits type imposes the constraint that the minimum
size cannot exceed the maximum size, and that neither the minimum nor maximum size
may exceed the specified upper bound k.

2.6.3 Execution

Execution is specified using small-step operational semantics. This is expressed through
clausal rules, with the conclusion on the left and the premises as side conditions on the
right [Spe25b].

A configuration S;F ; instr∗ represents the state of a program during its execution. It
consists of the store S, the frame state F and the sequence of instructions instr∗ to be
executed. The pair of the frame state F and the instruction sequence instr∗ is referred to
as a thread [Wor22a].

A store S (store) holds the global state of the execution. It contains the instances (inst)
of all functions, tables, memories and globals across all modules. These instances serve as
the runtime, stateful representations of their corresponding definitions [Wor22a].

A frame state F (framestate) refers to the local state of the function that is currently
executing. It consists of the values of the local variables and the module instance to which
the function belongs [Wor22a].
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A module instance (moduleinst) maintains a mapping from static indices, which are
used to refer to definitions, to dynamic addresses, which are used to access instances in
the store S. This mapping is necessary because instructions can only access instances that
are defined or imported within the current module.

Furthermore, instructions are extended to include administrative instructions (admininstr),
as detailed below. These instructions model intermediate steps of execution and cannot
appear in the Wasm program itself [Wor22a].

• Trap Instruction: The trap instruction represents the occurrence of a trap, which
may be triggered by instructions such as unreachable.

• Label Instruction: The label instruction denotes a label on the control stack. The
subscript n indicates the arity of the label — the number of values expected on a
branch. It also includes a continuation, which is executed upon exiting the label.

• Frame Instruction: The frame instruction represents a frame on the call stack.
The subscript n specifies the arity of the frame — the number of values expected
upon return. It also carries the frame state F of the corresponding function, allowing
inner instructions to be reduced with respect to this frame state.

• Invoke Instruction: The invoke instruction serves as an intermediate step for both
the call and call_indirect instructions, thereby unifying the handling of different forms
of function calls.

To model the reduction of branch instructions, a block context Bk[_] (blockcontext)
and its associated reduction rules (R-block) are introduced. This context represents the
stack of labels surrounding the current instruction sequence [Wor22a].

Similarly, to model the reduction of a subsequence of instructions, an evaluation context
E[_] (evalcontext) and its associated reduction rules (R-eval) [Wor22a] are introduced.
This context effectively captures the call-by-value (CBV) reduction strategy.

Finally, values on the operand stack are represented by constant instructions in the re-
duction rules. This is convenient, as these intermediate values need not be distinguished
from occurrences of the const instructions in the Wasm program.

The following provides a brief overview of key reduction rules [Wor22a]:

Numeric Instructions (R-numeric): A unary or binary operation instruction may trigger
a trap if the operation is undefined for the given operand values. In contrast, test and
relation operations never cause a trap.

Parametric Instructions (R-parametric): The drop and select instructions are reduced
by dropping or selecting the operand values, respectively.

Variable Instructions (R-variable): Local variables are accessed through the frame state
F , while global variables are accessed through the store S. The get instructions do not
modify either the store or the frame state, unlike the set instructions.

Control Instructions (R-control): The nop and unreachable instructions reduce to an
empty instruction sequence and a trap, respectively.

The block and loop instructions are both reduced to a label instruction, allowing branches
to be handled by common reduction rules [Wor22a]. The block instruction has an empty
continuation, whereas the loop instruction includes itself as the continuation.

If a branch occurs within a block context Bl, the control flow escapes all labels up to the
one specified by the label index l and proceeds to execute the corresponding continuation.
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Otherwise, the label exits with the values on the operand stack.

2.7 WasmCert-Coq

As this project focuses on mechanised proofs in Coq, we will only discuss the structure of
WasmCert-Coq [WRPP+21] in this report.

2.7.1 Definitions

The structures defined in the Wasm specification [Wor22a] are manually translated into
inductive definitions in Coq. Figure 2.4 presents the definitions for both the basic and
administrative instructions.

Inductive basic_instruction : Type :=
| BI_unop : number_type -> unop -> basic_instruction
| BI_binop : number_type -> binop -> basic_instruction
...

Inductive administrative_instruction : Type :=
| AI_label : nat -> list administrative_instruction

-> list administrative_instruction -> administrative_instruction
...

Figure 2.4: Definitions of instructions in WasmCert-Coq [BGP+25]

2.7.2 Typing Rules

The typing rules are represented as inductively defined relations in Coq, as shown in
Figure 2.5. These relations are effectively dependent types indexed by the terms over
which the relations are defined.

Inductive be_typing : t_context -> seq basic_instruction -> instr_type -> Prop :=
| bet_unop : forall C t op, unop_type_agree t op

-> be_typing C [::BI_unop t op] (Tf [::T_num t] [::T_num t])
| bet_binop : forall C t op, binop_type_agree t op

-> be_typing C [::BI_binop t op] (Tf [::T_num t; T_num t] [::T_num t])
...

Figure 2.5: Definitions of typing rules in WasmCert-Coq [BGP+25]

2.7.3 Reduction Rules

The reduction rules are similarly defined as inductively defined relations in Coq, as pre-
sented in Figure 2.6. The reduce_simple relation represents the reduction rules for simple
instructions that do not interact with the store or frame state, while the reduce relation
models the remaining reduction rules.
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Inductive reduce_simple :
seq administrative_instruction -> seq administrative_instruction -> Prop :=
| rs_unop : forall v op t,

reduce_simple [::$VN v; AI_basic (BI_unop t op)] [::$VN (@app_unop op v)]
| rs_binop_success : forall v1 v2 v op t, app_binop op v1 v2 = Some v ->

reduce_simple [::$VN v1; $VN v2; AI_basic (BI_binop t op)] [::$VN v]
...

Inductive reduce :
host_state -> store_record -> frame -> list administrative_instruction ->
host_state -> store_record -> frame -> list administrative_instruction -> Prop :=
...

Figure 2.6: Definitions of reduction rules in WasmCert-Coq [BGP+25]

2.7.4 Soundness

The soundness of Wasm follows directly from the preservation and progress properties [Wor22a].

Informally, the preservation property states that the type of an instruction sequence is
preserved before and after execution, and the progress property states that any non-
terminal instruction sequence is always reducible.

To express these properties more formally, the typing rules are extended to include vari-
ous forms of judgements that validate the structure of the configuration and its compo-
nents:

The configuration validity is defined such that a configuration S;F ; instr∗ is valid with
type [t∗] of the underlying instruction sequence, if the store S is valid and instr∗ is valid
with the same type [t∗] in terms of thread validity [Wor22a].

Configuration Validity
⊢ S ok S; ε ⊢ F ; instr∗ : [t∗]

⊢ S;F ; instr∗; [t∗]

The thread validity is defined as valid with type [t∗] if instr∗ is valid with type [] → [t∗]
with respect to the context C determined by frame validity.

Thread validity
S ⊢ F : C S;C, return resulttype? ⊢ instr∗ : [] → [t∗]

S; resulttype? ⊢ F ; instr∗ : [t∗]

The store validity is defined in terms of the validity of its components [Wor22a]. The
frame validity types the frame state F with respect to the context C by extending the
validity of a module instance [Wor22a]. The validity of individual instances is omitted
here for brevity.
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Store validity

(S ⊢ funcinst : functype)∗ (S ⊢ tableinst : tabletype)∗

(S ⊢ meminst : memtype)∗ (S ⊢ globalinst : globaltype)∗

(S ⊢ eleminst : elemtype)∗ (S ⊢ datainst : datatype)∗

S = {funcs funcinst∗, tables tableinst∗,mems meminst∗,
globals globalinst∗, elems eleminst∗, datas datainst∗}

⊢ S ok

Frame validity
S ⊢ moduleinst : C (S ⊢ val : t)∗

S ⊢ {locals val∗,module moduleinst} : (C, locals t∗)

Furthermore, the typing rules are also extended to handle administrative instructions.
This is necessary because the preservation property concerns the validity of a contractum,
which may include administrative instructions following reduction.

Finally, the preservation and progress properties can be formulated as follows [Wor22a].
The notation S ⪯ S′ represents the store extension judgement, which ensures that reduc-
tion neither removes nor alters the types of its components. Additionally, a configuration
is terminal if it consists of either a sequence of constant instructions or a trap.

Theorem 1 (Preservation)
If ⊢ S;F ; instr∗ : [t∗] and S;F ; instr∗ ↪→ S′;F ′; instr∗,
then ⊢ S′;F ′; instr ′∗ : [t∗] and S ⪯ S′.

Theorem 2 (Progress)
If ⊢ S;F ; instr∗ : [t∗], then either S;F ; instr∗ is terminal,
or there exist S′, F ′, instr ′∗ such that S;F ; instr∗ ↪→ S′;F ′; instr ′∗.

The soundness of the WebAssembly language then follows intuitively from these two
properties. More informally, soundness states that every thread in a valid configura-
tion either runs indefinitely, traps or terminates with a configuration of the expected
type [Wor22a].

Corollary 1 (Soundness)
If ⊢ S;F ; instr∗ : [t∗], then S;F ; instr∗ either diverges
or takes a finite number of steps to reach a terminal S′;F ′; instr ′∗

where ⊢ S′;F ′; instr ′∗ : [t∗] and S ⪯ S′.

2.8 SpecTec

2.8.1 Overview

Figure 2.7 provides an overview of the SpecTec architecture, inspired by the original
SpecTec paper [YSL+24].
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Figure 2.7: Overview of SpecTec architecture inspired by SpecTec paper [YSL+24]

The DSL is initially parsed into the external language (EL), which is essentially an abstract
syntax tree of the DSL. The EL is then elaborated into the internal language (IL), which
specifies details absent in the EL syntax. The IL may subsequently be reduced to lower-
level representations, such as the algorithmic language (AL) [YSL+24].

The following summarises the key artefacts generated by SpecTec [YSL+24]:

• Declarative Representations: The LATEX backend generates declarative represen-
tations directly from the EL. A simple template mechanism using splice commands
allows integration with external text input files for generating the final LATEX source
for the documentation.

• Algorithmic Representations: The prose backend converts the AL into algorith-
mic representations written in prose notation. These complement the declarative
style of the Wasm specification by offering a more readable, implementation-oriented
view of the semantics.

• Reference Interpreter: The interpreter backend produces a reference interpreter
in OCaml from the AL.

• Executable Tests: The fuzzer backend is responsible for generating comprehensive
test suites via fuzzing in Wasm text format from the IL.

• Mechanised Definitions: The theorem prover backend is responsible for generat-
ing theorem prover code from the IL. Currently, IL2Coq is capable of translating IL
definitions into inductive definitions in Coq.

The complete grammars of the SpecTec DSL and IL are provided in Appendix B for
reference.

2.8.2 Domain Specific Language

At its core, the domain-specific language (DSL) serves as a single source of truth from
which all key artefacts of the Wasm specification can be auto-generated. The DSL has
a notation-heavy syntax that closely mirrors the formal style of the Wasm specification,
which is inspired by traditional pen-and-paper notations used in programming language
semantics [YSL+24].

The following outlines the key top-level constructs in the DSL that are relevant to this
project. Further details and examples can be found in the documentation [Spe25b].
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Syntax types are used to define the abstract syntax of the language and its auxiliary con-
structs. They support various forms of type definitions, including type aliases, constructor
types, variant types, range types and record types [Spe25b].

syntax valtype =
| I32 | I64 | F32 | F64

syntax Inn = I32 | I64
syntax Fnn = F32 | F64

Figure 2.8: Examples of syntax definitions in DSL [YSL+25]

Relations and their associated rules are used to define typing, evaluation and other
predicates. These relations are declared with a type that specifies their custom nota-
tion, with the corresponding rules often accompanied by premises that specify side condi-
tions [Spe25b]. Symbols like –> and ~> are called atoms and may be used to form parts
of custom notations [Spe25b].

relation Step: config ~> config
relation Step_pure: admininstr* ~> admininstr*

rule Step/pure:
z; instr* ~> z; instr'*
-- Step_pure: instr* ~> instr'*

rule Step_pure/nop:
NOP ~> eps

Figure 2.9: Examples of relation definitions in DSL [YSL+25]

Functions are used to define auxiliary definitions within the Wasm specification. They
consist of a declaration followed by individual clauses. These clauses may perform pattern
matching on the parameter position and may also specify premises that serve as guards
for the pattern [YSL+24].

def $funcaddr(state) : funcaddr*
def $funcaddr((s; f)) = f.MODULE.FUNCS

def $funcinst(state) : funcinst*
def $funcinst((s; f)) = s.FUNCS

def $func(state, funcidx) : funcinst
def $func((s; f), x) = s.FUNCS[f.MODULE.FUNCS[x]]

Figure 2.10: Examples of function definitions in DSL [YSL+25]

2.8.3 External Language

The external language (EL) refers to the abstract syntax tree of the DSL[YSL+24], which
explicitly represents operator precedence and other syntactic elements in its syntax. As
the syntax of the EL is almost identical to that of the DSL, its details are omitted.

2.8.4 Internal Language

The purpose of the internal language (IL) is to explicitly represent details that are absent
in the DSL, thereby facilitating its use in downstream translation. A notable example is
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expressions in the IL, which are annotated with their corresponding types, although these
annotations are not reflected in the grammar.

The syntax of the IL largely mirrors that of the DSL. Note that the IL syntax does not
necessarily have a conflict-free textual grammar, as the IL is not intended to be parsed. If
parsing is required, it can be represented as S-expressions in AST mode [Spe25a].

The following briefly highlights several distinct elements of the IL that are relevant to this
project. Further details and examples can be found in the documentation [Spe25a].

Free variables in the IL are annotated by binds of the innermost construct [Spe25a],
which consist of pairs of variable identifiers and their associated types, as demonstrated
in Figure 2.11. The IL directly embeds this information within its syntax for simplicity,
although most programming languages typically use a symbol table for this purpose.

rule Instr_ok/unop:
C |- UNOP t unop_t : t -> t

rule unop{C : context, t : valtype, unop_t : unop_(t)}:
`%|-%:%`(C, UNOP_instr(t, unop_t), `%->%`_functype([t], [t]))

Figure 2.11: Examples of binds in IL [YSL+25]

Custom notations in the DSL are represented by a sequence of expressions interleaved
with atoms. In the IL, these sequences of atoms and expressions are explicitly sepa-
rated [Spe25a], as shown in Figure 2.12. For instance, @(Instr_ok: C |- instr : ft)|
in the DSL corresponds to Instr_ok: `%|-%:%`(C, instr, ft)| in the IL. The notation
`%;%|-%:%` represents a “mixop”, where % denotes the holes to be filled by the tuple (C,
instr, ft).

relation Instr_ok: context |- instr : functype
relation Instr_ok: `%|-%:%`(context, instr, functype)

relation Step_pure: admininstr* ~> admininstr*
relation Step_pure: `%~>%`(admininstr*, admininstr*)

Figure 2.12: Examples of mixops in IL [YSL+25]

Additionally, the IL explicitly annotates subsumptions from one type to another occurring
in expressions, as illustrated in Figure 2.13. These subsumptions are inserted according
to the subtyping rules of the DSL [Spe25b].

rule Step_pure/drop:
val DROP ~> eps

rule drop{val : val}:
`%~>%`([(val : val <: admininstr) DROP_admininstr], [])

Figure 2.13: Examples of subsumptions in IL [YSL+25]

2.8.5 IL2Coq

IL2Coq is a proof of concept solution to the theorem prover backend of the SpecTec
toolchain, which is capable of producing the inductive definitions from the DSL source [Cup24].
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Figure 2.14: Overview of IL2Coq design inspired by IL2Coq report [?]

Figure 2.14 provides an overview of the IL2Coq design, inspired by Diego’s report [Cup24].

The IL is translated into the mechanised internal language (MIL) through the main trans-
formation pass. Although the MIL is currently specific to Coq, it is intended to be gener-
alised to other theorem provers such as Isabelle/HOL [Isa].

IL2Coq has three auxiliary passes — the environment pass, the sub pass and else re-
moval [Cup24]. In the environment pass, the IL is scanned to generate an environment
that collects information necessary for the main transformation and other auxiliary passes.
The sub pass generates explicit subtyping conversion functions. The else removal pass
replaces occurrences of otherwise premises with predicates that explicitly negate the
corresponding conditions.

Inductive instr : Type :=
| instr__UNOP (v_valtype : valtype) (v_unop_ : unop_) : instr
| instr__BINOP (v_valtype : valtype) (v_binop_ : binop_) : instr
...

Inductive Step_pure: (list admininstr) -> (list admininstr) -> Prop :=
| Step_pure__unreachable : Step_pure [(admininstr__UNREACHABLE )]

[(admininstr__TRAP )]↪→

...

Fixpoint fun_min (v_reserved__nat_0 : nat) (v_reserved__nat_1 : nat) : nat :=
match (v_reserved__nat_0, v_reserved__nat_1) with

| (0, v_j) => 0
| (v_i, 0) => 0
| ((S v_i), (S v_j)) => (fun_min v_i v_j)

end.

Figure 2.15: Examples of auto-translated definitions in IL2Coq [Cup25]

Figure 2.15 illustrates the results of the Coq translation produced by IL2Coq. Syntax
and relation definitions in the DSL are translated into inductive definitions in Coq, while
function definitions are translated into (recursive) definitions.
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Chapter 3

Project

3.1 Progress Proof
The first milestone of this project is the mechanised proof of the progress property. As
stated in Theorem 2, the progress property asserts that any valid configuration is either
in terminal form or can step to another configuration. Together with Diego’s previous
work on the preservation proof [Cup24], the proofs of these two properties establish the
soundness of Wasm.

WebAssembly is distinguished by its rigorous formalisation, as evidenced by the soundness
theorems included within its specification [Wor19] — an uncommon feature in the docu-
mentation of most programming languages. In Wasm, formal proofs plays a crucial role
in the iterative feedback loop between language design and specification [Ros25].

The development of formal proofs in Wasm is therefore not only an academic exercise but
also a direct contribution to the design process of the language. Consequently, these proofs
must be produced to a high standard of quality in order to facilitate future maintenance
and development.

The progress proof is also beneficial for validating the DSL translation of the hand-written
Wasm specification [Wor22a]. This is significant because individual backends may not
always use every aspect of the DSL. For instance, the interpreter backend may disregard
some reduction rules and instead hardcode functionality within the OCaml codebase.
Mechanised proofs play a crucial role in detecting errors that might be missed by other
artefacts.

This section therefore aims to develop the progress proof in Coq with respect to Wasm
1.0 specification [Wor19]. We will introduce the necessary modifications to the DSL while
acknowledging the existing differences between the Wasm 1.0 specification and the DSL
translation. Subsequently, we will proceed to develop the main proof, maintaining an
SSReflect-native proof style.

3.1.1 Modifications to SpecTec DSL

Several modifications had to be made to the DSL translation of the Wasm 1.0 specifica-
tion [Wor19] before the main proof could be developed. This was necessary because some
parts of the translation, originally authored by Andreas, were incorrect or incompatible
with the progress property.

A number of additions and modifications have already been made by Diego to complete
the preservation proof [Cup24], which are not discussed in this report. Consequently, those
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presented in this section represent the remaining errors in the DSL that were not detected
through the preservation proof.

The first notable modification is the addition of the Step/ctxt-seq rule, as shown in
Figure 3.1, which was missing in the original version. The DSL translation lacked this
base case of the “bubbling up” semantics (explained later) that permits the reduction of a
sequence of instructions following the constants val* at the beginning. This omission was
not detected by the interpreter backend, as it hardcodes this evaluation context within
the OCaml codebase, nor by the preservation proof.

+rule Step/ctxt-seq:
+ z; val* admininstr* admininstr''* ~> z'; val* admininstr'* admininstr''*
+ -- Step: z; admininstr* ~> z'; admininstr'*

Figure 3.1: Modifications to Step/ctxt-seq rule

Another notable modification, spanning many reduction rules, is the replacement of certain
occurrences of instr with admininstr. This is necessary because the reduction rules that
depend on other relations, such as those shown in Figure 3.2, do not consider cases in
which an administrative instruction is reduced. These reduction rules would otherwise
apply only in cases where all the instructions are basic, thereby excluding instructions
such as label, frame and trap.

rule Step/pure:
- z; instr* ~> z; instr'*
- -- Step_pure: instr* ~> instr'*
+ z; admininstr* ~> z; admininstr'*
+ -- Step_pure: admininstr* ~> admininstr'*

rule Step/read:
- z; instr* ~> z; instr'*
- -- Step_read: z; instr* ~> instr'*
+ z; admininstr* ~> z; admininstr'*
+ -- Step_read: z; admininstr* ~> admininstr'*

Figure 3.2: Modifications to rules using instr instead of admininstr

Replacing instr with admininstr also helps to simplify the progress proof. To illustrate,
consider the example shown in Figure 3.1. Applying the Step_pure/trap-vals reduction
rule would otherwise require proving that the redex contains only instr* after the TRAP.
This distinction between admininstr* and instr* in the trailing position is, however, not
essential. WasmCert-Coq, for instance, simplifies such cases by directly using adminins ⌋

tr* — we follow the same approach here to streamline the proof development.

rule Step_pure/trap-vals:
- val* TRAP instr* ~> TRAP
- -- if val* =/= eps \/ instr* =/= eps
+ val* TRAP admininstr* ~> TRAP
+ -- if val* =/= eps \/ admininstr* =/= eps

Figure 3.3: Modifications to Step/trap-vals rule

Additionally, we noticed that the Step/ctxt-frame rule assumed that the frame state
f' remains unchanged after the reduction. This poses an issue, as it effectively prevents
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any change in both the local and global state of the current execution. We have therefore
resolved this by allowing the frame state f' to change to f'', as shown in Figure 3.4.

rule Step/ctxt-frame:
- s; f; (FRAME_ n `{f'} admininstr*) ~> s'; f; (FRAME_ n `{f'} admininstr'*)
- -- Step: s; f'; admininstr* ~> s'; f'; admininstr'*
+ s; f; (FRAME_ n `{f'} admininstr*) ~> s'; f; (FRAME_ n `{f''} admininstr'*)
+ -- Step: s; f'; admininstr* ~> s'; f''; admininstr'*

Figure 3.4: Modifications to ctxt-frame rule

Furthermore, we identified another inconsistency concerning the iteration dimensions of
numeric instructions. The issue arises because these reduction rules, such as those demon-
strated in Figure 3.5, assume that $binop returns either zero or one value. However, this
contradicts the actual return type of $binop, as specified in Figure 3.6, which may yield
zero or more values val_(valtype)*, including more than one.

Operator functions such as $binop may return zero or more values because certain floating-
point operations can exhibit non-deterministic behaviour in the NaN payload, depend-
ing on the runtime implementation [Fog18]. For the purposes of the progress proof,
we follow WasmCert-Coq’s approach and disregard this non-determinism for simplic-
ity [BGP+25].

rule Step_pure/binop-val:
(CONST t c_1) (CONST t c_2) (BINOP t binop) ~> (CONST t c)
-- if $binop(t, binop, c_1, c_2) = c

rule Step_pure/binop-trap:
(CONST t c_1) (CONST t c_2) (BINOP t binop) ~> TRAP
-- if $binop(t, binop, c_1, c_2) = eps

Figure 3.5: Modifications to Step_pure rules handling binop

-def $binop(valtype, binop_(valtype), val_(valtype), val_(valtype)) : val_(valtype)*
+def $binop(valtype, binop_(valtype), val_(valtype), val_(valtype)) : val_(valtype)?

Figure 3.6: Modifications to declaration of $binop function

A further inconsistency concerning the iteration dimensions was identified between the
typing rule and the reduction rule for Admin_instr_ok/call_addr. This was subsequently
resolved by correcting the typing rule, as illustrated in Figure 3.7.

rule Admin_instr_ok/call_addr:
- S; C |- CALL_ADDR funcaddr : t_1* -> t_2*
- -- Externvals_ok: S |- FUNC funcaddr: FUNC (t_1* -> t_2*)
+ S; C |- CALL_ADDR funcaddr : t_1* -> t_2?
+ -- Externvals_ok: S |- FUNC funcaddr: FUNC (t_1* -> t_2?)

Figure 3.7: Modifications to Admin_instr_ok/call_addr rule

Moreover, we observed that the reduction rule Step_read/loop incorrectly assumed that
the resulting label instruction has an arity of zero, rather than matching the arity specified
by the block type of the corresponding block instruction, as shown in Figure 3.8. This
poses an issue, as the reduction rule cannot be applied when the block type is non-empty.
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To address this, we introduced a premise explicitly associating the block type with its
corresponding arity.

rule Step_read/loop:
- z; (LOOP t? instr*) ~> (LABEL_ 0 `{LOOP t? instr*} instr*)
+ z; (LOOP t? instr*) ~> (LABEL_ n `{LOOP t? instr*} instr*)
+ -- if t? = eps /\ n = 0 \/ t? =/= eps /\ n = 1

Figure 3.8: Modifications to Step_read/loop rule

Finally, another missing premise was identified in the typing rule of the memory instance,
as shown in Figure 3.10. This constraint, |b*| = n * 64 * $Ki, is indeed specified in
the Wasm specification but was absent from the DSL. This is a condition that enforces
the invariant that the memory instance is always initialised and grown in multiples of 64
KiB — an assumption upon which instructions such as memory.size depend, as illustrated
in Figure 3.10.

rule Step_read/memory.size:
z; (MEMORY.SIZE) ~> (CONST (INN I32) n)
-- if $(n * 64 * $Ki) = |$mem(z, 0).BYTES|

Figure 3.9: Definition of Step_read/memory.size rule [YSL+25]

rule Memory_instance_ok:
S |- {TYPE mt, BYTES b*} : mt
-- if mt = `[n .. m]

+ -- if $(|b*| = n * 64 * $Ki)
-- Memtype_ok : |- mt : OK

Figure 3.10: Modifications to Memory_instance_ok rule

3.1.2 Divergence from WasmCert-Coq

In addition to the modifications discussed above, several changes in the DSL translation
that diverge from the Wasm specification must be acknowledged before presenting the
main proof.

The most notable change is the omission of the block context (blockcontext), which is used
to speicfy the reduction of br and return instructions, as well as the evaluation context
(evalcontext), which controls the reduction of inner instructions within a context. In the
DSL translation, both the block and evaluation context are replaced by an equivalent set
of reduction rules implementing the “bubbling up” semantics, as illustrated in Figures 3.11
and 3.12.

Figure 3.11 illustrates how branch and return instructions are “bubbled up” by recursively
decrementing the label index in the br instruction until the base case is reached. The return
instruction similarly propagates up through enclosing labels until the innermost frame is
encountered. This behaviour is effectively equivalent to a single reduction rule defined
using the block context B[_].

Figure 3.12, in contrast, shows how inner instructions are reduced with respect to their
surrounding labels and frames. Once again, reduction may be “bubbled up” through these
enclosing contexts. The trap instruction is also propagated upward in a similar manner.
This approach is likewise equivalent to a single reduction rule defined in terms of the
evaluation context E[_].
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The DSL translation uses this “bubbling up” semantics as it significantly simplifies the
development of both the interpreter backend and, more critically, the mechanised proof.
By eliminating the need to represent the block and evaluation contexts as separate data
structures, the overall proof process becomes considerably more tractable. However, this
also requires us to depart from the proof strategy used in WasmCert-Coq and develop an
alternative approach tailored to this version.

rule Step_pure/br-zero:
(LABEL_ n `{instr*} val'* val^n (BR 0) admininstr*) ~> val^n instr*
-- if |val^n| = n

rule Step_pure/br-succ:
(LABEL_ n `{instr*} val* (BR $(l+1)) admininstr*) ~> val* (BR l)

rule Step_pure/return-frame:
(FRAME_ n `{f} val'* val^n RETURN admininstr*) ~> val^n
-- if |val^n| = n

rule Step_pure/return-label:
(LABEL_ n `{instr*} val* RETURN admininstr*) ~> val* RETURN

Figure 3.11: Bubbling up reduction rules that replace block context [YSL+25]

rule Step/ctxt-label:
z; (LABEL_ n `{instr*} admininstr*) ~> z'; (LABEL_ n `{instr*} admininstr'*)
-- Step: z; admininstr* ~> z'; admininstr'*

rule Step/ctxt-frame:
s; f; (FRAME_ n `{f'} admininstr*) ~> s'; f; (FRAME_ n `{f''} admininstr'*)
-- Step: s; f'; admininstr* ~> s'; f''; admininstr'*

rule Step_pure/trap-label:
(LABEL_ n `{instr*} TRAP) ~> TRAP

rule Step_pure/trap-frame:
(FRAME_ n `{f} TRAP) ~> TRAP

Figure 3.12: Bubbling up reduction rules that replace evaluation context [YSL+25]

Additionally, we must note that numeric functions are assumed to always succeed in the
preservation proof, since their implementations are currently unspecified in the SpecTec
DSL. This is demonstrated in Figure 3.13, where the generated code is defined as an Axiom
that holds for arbitrary inputs. This assumption will also be necessary for the progress
proof.

Axiom fun_iadd : forall (v_reserved__N_0 : reserved__N) (v_iN_1 : iN) (v_iN_2
: iN), iN.↪→

Figure 3.13: Auto-translated definition of $iadd function in Coq [Cup25]

Furthermore, we assume the axiom val_wf, as given in Figure 3.14, which is necessary to
ensure that constant values are well-formed with respect to their type. This requirement
arises from a limitation in the current implementation of IL2Coq — the dependent ar-
gument of val_ in the definition of val is ignored in the corresponding Coq definition of
val, as illustrated in Figures 3.15 and 3.16 respectively. As a consequence, the resulting
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inductive definition does not guarantee that the v_val_ and v_valtype have matching
types.

The lack of this well-formedness property prevents us from applying some reduction rules.
To address this, we introduce the val_wf axiom as a temporary solution. This is an
acceptable compromise as the issue is expected to be resolved by the monomorphisation
feature in the near future.

Definition is_val_wf (c : val) : Prop :=
match c with

| val__CONST (valtype__INN inn) (val___inn__entry n) => True
| val__CONST (valtype__FNN fnn) (val___fnn__entry n) => True
| _ => False

end.

Axiom val_wf : forall (v : val), is_val_wf v.

Figure 3.14: Definition of val_wf axiom in Coq

syntax val =
| CONST valtype val_(valtype)

Figure 3.15: Definition of val in SpecTec DSL [YSL+25]

Inductive val : Type :=
| val__CONST (v_valtype : valtype) (v_val_ : val_) : val .

Figure 3.16: Auto-translated definition of val in Coq [Cup25]

Finally, some minor updates have been made to IL2Coq, such as replacing conjunctions
of premises with nested implications in inductive constructors and resolving the incorrect
handling of nested iteration types. These details are omitted in this section, as they are
not essential for explaining the proof structure.

3.1.3 Proof Style

In order to make the proofs clean and maintainable, we put significant effort into ensuring
that the progress proof is written in an SSReflect-native style. This is in contrast to the
proofs in WasmCert-Coq, which use a mixture of Coq and SSReflect syntaxes. In addition
to the consistent use of bookkeeping tacticals and by terminators [Inr18b], the following
stylistic conventions have been maintained throughout the progress proof:

• Use move tactic over intros and generalize tactics
• Use case tactic over destruct, injection and inversion tactics
• Use elim tactic over induction tactic
• Use rewrite tactic over unfold and subst tactics
• Use have tactic over assert tactic
• Use set tactic over remember tactic
• Use do tactical over repeat tactical
• Use done tactic or by tactical over reflexivity and discriminate tactics
• Use simplification items over simpl tactic
• Use view mechanisms of move tactic over specialize tactic

However, there are some exceptions to these conventions.
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The first notable exception concerns the use of the inversion tactic [Inr25a], for which
there is no direct counterpart in SSReflect. We would otherwise need to manually per-
form the necessary bookkeeping prior to applying the case tactic, which can result in
considerably more laborious proofs.

In addition, we permit the occasional use of tactics such as destruct and subst [Inr25a]
within custom Ltac definitions. This is because their SSReflect counterparts require us to
explicitly name each newly introduced variable using the let x := fresh "x" in syntax,
which can quickly become cumbersome.

The last exception concerns the use of the apply term with (ident := term) syn-
tax [Inr25a]. SSReflect does not support this syntax because the identifier ident is,
in theory, subject to alpha-renaming at any point during proof mode. Nevertheless, we
allow the use of this syntax because the progress proof involves theorems and lemmas with
a large number of dependent arguments, which makes it impractical to specify them all
explicitly.

3.1.4 Proof Structure

A large part of the high-level proof structure, specifically the formulation of the auxiliary
lemmas, is based on the proofs in WasmCert-Coq [BGP+25]. The main exception is the
handling of the block and evaluation contexts, which must be reformulated to accommo-
date the equivalent reduction rules adopted in the DSL translation.

The statements of these lemmas closely mirror those in WasmCert-Coq, but we have
made a deliberate effort to rewrite their individual proofs from scratch. This ensures that
the proofs are not simply copied and pasted without understanding their logical flow, as
such an approach would likely result in missed opportunities for refactoring and lead to
cumbersome code that fails to account for the subtle differences between the specification
and the DSL translation. Moreover, this approach helps us to reinforce the proof styles
discussed earlier in a more reliable manner.

Figure 3.17 presents the dependency graph of the auxiliary lemmas, with the progress
property shown at the very bottom. While we omit the actual proofs and some of the
definitions in this report, interested readers may refer to the code available in the reposi-
tory.

Note that the statements of these theorems and lemmas may contain some inconsistent
naming, as they are derived from the auto-generated definitions of IL2Coq, which have
yet to be improved.

Figure 3.17: Dependency graph of auxiliary lemmas in progress proof
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The theorem t_progress, as shown in Figure 3.18, is the Coq formulation of the progress
property. The predicate terminal_form specifies that the instructions are either constants
or a single trap, as defined in Figure 3.19. This theorem depends on four major auxiliary
lemmas: t_progress_e, t_progress_be, s_typing_not_lf_return and s_typing_not ⌋

_lf_br. The first two establish that the progress property holds for administrative and
basic instructions, respectively, under the assumption that no br or return instructions
appear at the top level. The latter two show that this assumption indeed holds true,
provided that the configuration is valid.

Theorem t_progress :
forall s f es ts,
Config_ok (config__ (state__ s f) es) ts ->
terminal_form es \/
exists s' f' es',
Step (config__ (state__ s f) es) (config__ (state__ s' f') es').

Figure 3.18: Definition of progress property adapted from WasmCert-Coq [BGP+25]

Definition terminal_form es :=
const_list es \/ es = [:: admininstr__TRAP].

Definition not_lf_br es :=
forall vcs l es',
es <> list__val__admininstr vcs ++ [:: admininstr__BR l] ++ es'.

Definition not_lf_return es :=
forall vcs es',
es <> list__val__admininstr vcs ++ [:: admininstr__RETURN] ++ es'.

Definition br_reduce es :=
exists vcs l es',
es = list__val__admininstr vcs ++ [:: admininstr__BR l] ++ es'.

Definition return_reduce es :=
exists vcs es',
es = list__val__admininstr vcs ++ [:: admininstr__RETURN] ++ es'.

Figure 3.19: Definitions of auxiliary predicates adapted from WasmCert-Coq [BGP+25]

The lemma t_progress_e, as given in Figure 3.20, is referred to as the (administrative)
fragment progress property in the paper “Two Mechanisations of WebAssembly 1.0” by
Conrad et al. This lemma essentially reformulates the progress property by assuming sev-
eral conditions derived through inversion of the configuration validity. It also strengthens
the statement by allowing appropriate vcs to be inserted in the redex, as well as permit-
ting arbitrary lab and ret in the context C. This is necessary for some inductive steps,
since the es may refer to any sub-instructions within a valid configuration.

The proof of t_progress_e proceeds by a triple mutual induction over three relations
— Admin_instr_ok, Admin_instrs_ok and Thread_ok. The inductive predicates for ⌋

Admin_instr_ok and Admin_instrs_ok are defined trivially. In contrast, the inductive
predicate for Thread_ok requires fewer assumptions, as it follows directly from the induc-
tive hypothesis on Admin_instrs_ok.

The predicates not_lf_br and not_lf_return, as given in Figure 3.19, enforce that no
br or return instructions appear at the top level. This is crucial because, for any sub-
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instructions within a valid configuration, these instructions cannot be reduced indepen-
dently but must be reduced as part of the enclosing label and frame instructions.

The reduction of a br or return instruction occurs only when the first non-constant in-
struction in a sequence is a br or return. This condition is captured by the predicates
br_reduce and return_reduce, as shown in Figure 3.19. These predicates are equivalent
to the negations of not_lf_br and not_lf_return, respectively.

Therefore, in the inductive steps for label and frame instructions, we must perform a case
analysis on whether the reduction of a br or return instruction may occur or not. In
manually written proofs, such case analysis would proceed immediately. In Coq, how-
ever, we must first establish that this case analysis is valid by proving that the logical
truth of br_reduce and return_reduce is decidable. These decidability properties are
stated in the lemmas br_reduce_decidable and return_reduce_decidable, as given in
Figure 3.23.

In the case where the reduction of a br or return instruction occurs, we must further ensure
that there are as many constants as the arity of the outermost label or frame instructions,
respectively. This is established in the lemmas br_reduce_extract_vs and return_re ⌋

duce_extract_vs, as noted in the diagram of Figure 3.17. The proofs of these lemmas
proceed by inverting the administrative instruction validity and establishing a correspon-
dence between the number of constants and the top element of the labels component of
the context.

Note that these lemmas are completely reformulated from those in WasmCert-Coq to
accommodate the omission of the block and evaluation contexts in the DSL translation.
These parts of the proofs therefore represent the most original aspects of the progress
proof in terms of its overall structure, although some similarities remain.

Lemma t_progress_e :
forall s C C' f vcs es tf ts1 ts2 lab ret,
Admin_instrs_ok s C es tf ->
tf = functype__ ts1 ts2 ->
C = (upd_local_label_return C'

(map typeof f.(frame__LOCALS)) lab ret) ->
Module_instance_ok s f.(frame__MODULE) C' ->
map typeof vcs = ts1 ->
Store_ok s ->
not_lf_br es ->
not_lf_return es ->
terminal_form (list__val__admininstr vcs ++ es) \/
exists s' f' es',
Step (config__ (state__ s f) (list__val__admininstr vcs ++ es))

(config__ (state__ s' f') es').

Figure 3.20: Definition of administrative fragment progress property adapted from
WasmCert-Coq [BGP+25]

Similarly, the lemma t_progress_e, as presented in Figure 3.21, is referred to as the (ba-
sic) fragment progress property by Conrad et al [WRPP+21]. This lemma also reformu-
lates the progress property by assuming several fine-grained conditions and strengthening
the statement for certain inductive steps.

The proof of t_progress_be proceeds by mutual induction over the relations Instr ⌋

_ok and Instrs_ok, sharing a structure similar to that of t_progress_e. While the
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inductive steps of t_progress_be are generally simpler than those of t_progress_e, some
instructions, such as call_addr and memory_grow, require extensive case analysis.

Lemma t_progress_be :
forall s C C' f vcs bes tf ts1 ts2 lab ret,
Instrs_ok C bes tf ->
tf = functype__ ts1 ts2 ->
C = (upd_local_label_return C'

(map typeof f.(frame__LOCALS)) lab ret) ->
Module_instance_ok s f.(frame__MODULE) C' ->
map typeof vcs = ts1 ->
Store_ok s ->
not_lf_br (list__instr__admininstr bes) ->
not_lf_return (list__instr__admininstr bes) ->
const_list (list__instr__admininstr bes) \/
exists s' f' es',
Step (config__ (state__ s f) (list__val__admininstr vcs ++

list__instr__admininstr bes)) (config__ (state__ s' f') es').↪→

Figure 3.21: Definition of basic fragment progress property adapted from WasmCert-
Coq [BGP+25]

Finally, the lemmas s_typing_not_lf_br and s_typing_not_lf_return, as given in Fig-
ure 3.22, state that no br or return instructions appear at the top level following the con-
stants, given that the thread constituting the original configuration is valid. These lemmas
depend on s_typing_lf_br and s_typing_lf_return, as noted in the diagram of Fig-
ure 3.17, which assert that every instruction in es is neither a br nor a return instruction,
regardless of the occurrences of the constants preceding them.

Lemma s_typing_not_lf_br :
forall s rs f es ts,
Thread_ok s rs f es ts -> not_lf_br es.

Lemma s_typing_not_lf_return :
forall s f es ts,
Thread_ok s None f es ts -> not_lf_return es.

Figure 3.22: Definitions of br and return progress adapted from WasmCert-
Coq [BGP+25]

Lemma return_reduce_decidable :
forall es, decidable (return_reduce es).

Lemma br_reduce_decidable :
forall es, decidable (br_reduce es).

Figure 3.23: Definitions of decidability lemmas adapted from WasmCert-Coq [BGP+25]

3.1.5 Soundness

Now that the progress proof is complete, the soundness (Corollary 1) of the WebAssembly
language can be established [Wor22a], in combination with the preservation proof by
Diego [Cup24].

Soundness is a direct consequence of the preservation and progress properties, which is not
intended to be verified by a mechanised proof. For this reason, the Wasm specification only
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describes this result in a semi-formal style [Wor22a], and WasmCert-Coq does not include
its mechanisation at all [BGP+25]. This section therefore serves only as an experimental
study, rather than a formal one.

Due to its semi-formal specification, the statement of soundness can be interpreted in
various ways. In this section, we propose two possible, slightly more formal interpreta-
tion of Corollary 1, referred to as weak soundness (Corollary 2) and strong soundness
(Corollary 3).

Corollary 2 (Weak Soundness)
If ⊢ S;F ; instr∗ : [t∗], then there exists a trace starting from S;F ; instr∗

such that it either diverges or takes a finite number of steps to reach a terminal S′;F ′; instr ′∗

where ⊢ S′;F ′; instr ′∗ : [t∗] and S ⪯ S′.

Corollary 3 (Strong Soundness)
If ⊢ S;F ; instr∗ : [t∗], then for every trace starting from S;F ; instr∗,
it either diverges or takes a finite number of steps to reach a terminal S′;F ′; instr ′∗

where ⊢ S′;F ′; instr ′∗ : [t∗] and S ⪯ S′.

Weak soundness asserts that soundness holds for a particular trace starting from S;F ; instr∗,
while strong soundness requires soundness to hold for every trace starting from S;F ; instr∗.
This distinction is necessary because the execution of Wasm is not always determinis-
tic [Wor22a]. In this section, we focus on establishing weak soundness, as strong soundness
can be difficult to formulate intuitively.

The proof of weak soundness remains cumbersome, however, if we translate its statement
directly into first-order (constructive) logic. Instead, we formulate this property as a co-
inductive relation called Config_sound, as illustrated in Figure 3.24. This is an elegant
solution originally proposed by Rao for WasmCert-Coq [BGP+25], which we have adapted
for SpecTec.

The Config_sound relation represents a subset of the validity relation Config_ok. This
soundness relation is co-inductively defined, meaning it may hold through infinite appli-
cations of the inductive case Config_sound__, even without establishing the base case
Config_sound__terminal. The inhabitance of this relation corresponds to the existence
of a trace that may either diverge or reach a terminal configuration of the same type after
a finite number of steps.

CoInductive Config_sound s f es ts
(Hconfig : Config_ok (config__ (state__ s f) es) ts) : Prop :=
| Config_sound__terminal :

terminal_form es ->
Config_sound s f es ts Hconfig

| Config_sound__step s' f' es'
(Hconfig' : Config_ok (config__ (state__ s' f') es') ts) :
Step (config__ (state__ s f) es) (config__ (state__ s' f') es') ->
Config_sound s' f' es' ts Hconfig' ->
Config_sound s f es ts Hconfig.

Figure 3.24: Co-inductive relation for weak soundness inspired by Rao’s solution

The proof of weak soundness using this relation is presented in Figure 3.25. The proof
proceeds by co-recursively establishing the inhabitance of the Config_sound relation. As
we can observe, the proof follows trivially from the preservation and progress properties es-
tablished previously, confirming that soundness is indeed a direct consequence of these two
properties. Note that the store extension S ⪯ S′ is omitted in this proof for brevity.
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Theorem t_soundness :
forall s f es ts (Hconfig : Config_ok (config__ (state__ s f) es) ts),
Config_sound s f es ts Hconfig.

Proof.
cofix Hsound. move=> s f es ts Hconfig.
case Hprogress: (t_progress s f es ts Hconfig) => [Hterm | [s' [f' [es' Hstep]]]].
- by apply: Config_sound__terminal.
- have Hconfig' := t_preservation s f es s' f' es' ts Hstep Hconfig.

by apply: (Config_sound__step s f es ts Hconfig s' f' es').
Qed.

Figure 3.25: Co-recursive proof of weak soundness inspired by Rao’s solution

3.2 Decidable Equality Proofs

The next step of this project is to make each auto-translated data type T an instance of
SSReflect’s EqType [Inr25c], which would enable the use of the boolean equality opera-
tor ==, the membership operator \in and the associated SSReflect lemmas for boolean
equality.

These operators are essential for performing case analysis on equality of certain data types,
which is required for some inductive steps in the progress proof. IL2Coq already generates
instances for several utility type classes, namely Inhabited for providing default values
and Append for concatenating record values [Cup25]. However, it lacked support for Eq ⌋

Type instances, and therefore we had to manually define EqType instances for some data
types during the progress proof.

This section thus aims to fully automate this process as part of IL2Coq’s auto-translation
mechanism. We generate EqType instances automatically for data types defined using
Coq’s Inductive, Record and Definition commands, including automated proofs of
decidable equality as required.

3.2.1 Non-Recursive Data Types

Figures 3.26 and 3.27 present an example of the auto-generated EqType instances for a
non-recursive data type. In this section, we follow WasmCert-Coq’s approach [BGP+25],
which uses decidable equality proofs to automatically derive the corresponding op and
axiom op definitions. These Coq definitions are generated by extending the render-
ing logic of IL2Coq, which is also responsible for generating instances of other type-
classes [Cup25].

Decidable equality for a given data type T asserts that for any two values v1 and v2 of
type T, either the proposition v1 = v2 or v1 <> v2 is true [PdAC+25]. This property
is represented by the type decidable (v1 = v2), which expands to the sum type {v1 =
v2} + {v1 <> v2}.

A key characteristic of this sum is that it belongs to the sort Type rather than Prop, which
means that it is computationally relevant. We can therefore pattern match against a proof
term of the type {v1 = v2} + {v1 <> v2} at runtime, allowing us to extract a boolean
equality function from the proof term. The resulting boolean equality function func_eq ⌋

b makes the derivation of the reflection principle reflect (x = y) (op x y) trivial, as
demonstrated in eq_dec_Equality_axiom.
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Create HintDb eq_dec_db.

Ltac decidable_equality_step :=
do [ by eauto with eq_dec_db | decide equality ].

Lemma eq_dec_Equality_axiom :
forall (T : Type) (eq_dec : forall (x y : T), decidable (x = y)),
let eqb v1 v2 := is_left (eq_dec v1 v2) in Equality.axiom eqb.

Proof.
move=> T eq_dec eqb x y. rewrite /eqb.
case: (eq_dec x y); by [apply: ReflectT | apply: ReflectF].

Qed.

Figure 3.26: Header of EqType instances auto-generated by IL2Coq

Inductive func : Type := ...

Definition func_eq_dec : forall (v1 v2 : func),
{v1 = v2} + {v1 <> v2}.

Proof. do ? decidable_equality_step. Defined.

Definition func_eqb (v1 v2 : func) : bool :=
is_left (func_eq_dec v1 v2).

Definition eqfuncP : Equality.axiom (func_eqb) :=
eq_dec_Equality_axiom (func) (func_eq_dec).

Canonical Structure func_eqMixin := EqMixin (eqfuncP).
Canonical Structure func_EqType :=

Eval hnf in EqType (func) (func_eqMixin).

Hint Resolve func_eq_dec : eq_dec_db.

Figure 3.27: EqType instance auto-generated by IL2Coq for non-recursive data types

A major benefit of this approach is that the decidable equality proofs can be fully au-
tomated using the decide equality tactic. Given a goal of the appropriate form, the
decide equality tactic destructs v1 and v2 and recursively applies itself until the equal-
ity or the inequality of the subterms can be established trivially.

Finally, data types in Coq are made instances of EqType through canonical structures [Inr21a].
Canonical structures are a powerful mechanism adopted in the MathComp library [Inr25c]
for overload resolution, providing a form of ad-hoc polymorphism. They are closely inte-
grated with Coq’s unification engine, resulting in faster and more predictable resolution
compared to typeclasses [Inr21a], which rely on proof search over the implicitly generalised
arguments (until recently).

3.2.2 Recursive Data Types

In contrast to non-recursive types, the proof of decidable equality for recursive types,
such as instr and admininstr, requires special handling. This is because, a repeated
application of the decide equality tactic would simply result in an infinite loop, unlike
the func type in the previous example.

Consider the block instruction instr__BLOCK, which consists of seq instr and blocktyp ⌋

e. The decide equality tactic begins by destructing instr__BLOCK, reducing decidable
equality on instr__BLOCK to that of seq instr. The tactic then infers that, to prove
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decidable equality on seq instr, it suffices to prove that of instr. However, this is
identical to the original goal, thereby causing an infinite loop.

Inductive instr : Type := ...

Fixpoint instr_eq_dec (v1 v2 : instr) {struct v1} :
{v1 = v2} + {v1 <> v2}.

Proof. decide equality; do ? decidable_equality_step. Defined.

Definition instr_eqb (v1 v2 : instr) : bool :=
is_left (instr_eq_dec v1 v2).

Definition eqinstrP : Equality.axiom (instr_eqb) :=
eq_dec_Equality_axiom (instr) (instr_eq_dec).

Canonical Structure instr_eqMixin := EqMixin (eqinstrP).
Canonical Structure instr_EqType :=

Eval hnf in EqType (instr) (instr_eqMixin).

Hint Resolve instr_eq_dec : eq_dec_db.

Figure 3.28: EqType instance auto-generated by IL2Coq for recursive types

Figures 3.26 and 3.28 illustrate an example of the auto-generated EqType instances for a
recursive type. The key observation is that any proof making use of an inductive principle
is fundamentally a recursive Gallina term, and can therefore be defined using Fixpoint.
By defining the proof term with Fixpoint instead of Definition, the proposition fora ⌋

ll v1 v2, {v1 = v2} + {v1 <> v2} is introduced as a hypothesis in the local context.
This hypothesis can then be leveraged by the decide equality tactic to establish the
decidable equality of the subterms of instr.

However, the use of Fixpoint alone is not sufficient because the eauto with eq_dec_db
tactic attempts to solve the goal by applying any available hypotheses in the local context
before using facts from the hint database. The instr_eq_dec would therefore apply the
hypothesis forall v1 v2, {v1 = v2} + {v1 <> v2} before destructing v1, resulting in
a proof term like fun v1 v2 : instr => instr_eq_dec v1 v2. To prevent such invalid
recursion, we insert an additional call to decide equality at the start of the proof,
ensuring that v1 is structurally decreasing, as annotated by {struct v1}.

Finally, these decidable equalities are maintained in the custom hint database eq_dec ⌋

_db. This is necessary because some instructions, such as admininstr, may reference
recursive data types. Within the decidable equality proof for admininstr, Fixpoin ⌋

t introduces inductive hypotheses only for admininstr, and not for instr. This would
force us to reconstruct the proof for instr from scratch, thereby causing an infinite loop
once again.

3.3 First-Order Logic Extension

The major contribution of this project is the extension of the SpecTec toolchain with
first-order logic. This section explores the design and implementation of first-order logic
constructs, such as universal and existential quantifiers, as well as rule invocations within
the SpecTec DSL [YSL+24].

WebAssembly is characterised by its comprehensive formalisation [Ros25], which is re-
flected in the soundness theorems included in the appendix of its specification [Wor19]. In
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addition to these theorems, the draft specification of Wasm 3.0 further introduces a num-
ber of key theorems, including principal types, the type lattice and the compositionality
of instruction sequences [Wor22b].

The primary motivation for this extension is therefore to specify these theorems within
the DSL. This approach allows us to express not only the existing theorems in the DSL
but also any new theorems that may be introduced in the future. Given their importance,
specifying these theorems within the SpecTec DSL is well aligned with its role as a “single
source of truth.”

This extension also allows the theorems specified in the DSL to be not only used for Coq
translation but also to be rendered as LATEX formulas and prose descriptions within the
specification. This approach further strengthens the role of the SpecTec DSL as a “single
source of truth,” by ensuring that the theorems in the specification precisely match those
used in the mechanised proofs.

Furthermore, a major benefit of these first-order logic constructs is that they enable the
unified specification of theorems and auxiliary lemmas across different theorem provers.
The proof structure of these theorems is otherwise left entirely to verification engineers,
which can lead to inconsistent naming conventions, reformulations via corollaries and
divergent proof strategies. We can mitigate such risks by maintaining these statements
within the DSL.

premise ::=
"var" id ":" typ local variable declaration
"if" exp side condition
"othherwise" fallback side condition
relid ":" exp relational premise
"(" premise ")" iter* iterated relational premise

Figure 3.29: Syntax of premises in SpecTec DSL [Spe25b]

It is important to note that the SpecTec DSL already provides a mechanism to express a
subset of first-order logic (and thus propositional logic) via premises [Spe25b]. As illus-
trated in Figure 3.29, it supports expressing boolean expressions using the "if" syntax,
rule invocations via the ruleid ":" exp syntax and iterated premises via the "(" pre ⌋

mise ")" iter* syntax.

However, premises come with a critical restriction that they can only appear as side
conditions in the top-level definitions and declarations, as specified in Appendix B.2.
Consequently, they are not a generic mechanism that can be used as expressions elsewhere,
which limits their power to express statements consisting of an arbitrary first-order logic
formula.

This section thus aims to lift these premises to general expressions, while strengthening
their expressibility by introducing universal and existential quantifiers. The syntax and
semantics of the DSL, IL and MIL will be extended accordingly. We will then integrate
the Coq backend to allow automatic translation of theorems, alongside the LATEX, prose
and splice backends to display these theorems in the specification in a human-friendly
format. All of these changes will be implemented by extending SpecTec’s OCaml code-
base [YSL+25].

Figure 3.30 provides an overview of the parts of the SpecTec toolchain that have been
extended in this section of the project. The interpreter and fuzzer backends remain largely
untouched, as their integration is not essential for our purposes.
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Figure 3.30: Scope of first-order logic extension in SpecTec toolchain inspired by SpecTec
paper [YSL+24]

The design of new language features in the SpecTec DSL is guided by two core principles
— maintaining backward compatibility and balancing the trade-off between readability
and expressibility.

Backward compatibility is particularly crucial for these new constructs to be considered
for adoption in the DSL. This is further emphasised by the fact that SpecTec is currently
used not only by the Wasm specification but also by the specification of other languages,
notably the P4 language [LR24], a domain-specific language designed for programming
packet-processing network devices [Con24].

The trade-off between readability and expressibility is also a recurring concern when de-
signing new features in the DSL. This is because the SpecTec DSL is a highly notation-
heavy language that allows specification writers to use a wide range of symbols, such as
:, |- and ->, as part of custom notations. This design choice was deliberate to make
the SpecTec DSL an ASCII-readable, human-friendly language [YSL+24] but poses sig-
nificant challenges in terms of disambiguation. It is therefore important to acknowledge
this trade-off as it imposes many restrictions that are uncommon in other programming
languages.

3.3.1 Design Choices

This section discusses possible designs for the first-order logic extension, revisiting as-
sumptions and exploring the designs from scratch.

DSL-Level or MIL-Level Definitions

There is a fundamental question that must be addressed before considering any other
designs — whether theorems should be maintained in the DSL or in a lower-level repre-
sentation, namely the MIL.

Maintaining theorems in the MIL has the advantage of not introducing first-order logic
constructs into the DSL syntax. This is ideal for keeping the DSL syntax as minimal as
possible, given that it is already notation-heavy. There will also be fewer restrictions in
terms of design choices, since the MIL is tailored for use in theorem provers.

However, the MIL is unlikely to be a suitable format, since it lacks a parsable textual
grammar. This is a deliberate design choice, as it would otherwise require a separate
parser with a fully disambiguated grammar, and force specification writers to learn an
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entirely new syntax for writing theorems. This is despite the fact that the remainder
of the specification can be fully expressed within the SpecTec DSL, which contradicts
SpecTec’s purpose as a “single source of truth” [YSL+24].

On the other hand, first-order logic constructs can be introduced into the DSL syntax
with minimal modifications, thereby flattening the learning curve for specification writers.
Additionally, the DSL approach makes it possible to render theorems and auxiliary lemmas
in LATEX and prose descriptions within the specification. This is only feasible in the DSL
because the LATEX and prose backends operate on the EL and IL/AL respectively, which
cannot be reconstructed from the MIL.

We therefore conclude that the DSL is the appropriate format for this purpose.

Possible Designs for Basic Formulas

Basic formulas in this context refer to the subset of first-order logic constructs consist-
ing of universal and existential quantifiers and rule invocations. Our goal is to design
these basic formulas as first-class citizens, allowing them to be used more flexibly beyond
premises.

Figure 3.31 presents the initial design of basic formulas. Basic formulas are modelled as a
syntactically distinct entity by assigning the non-terminal formula. The formula contains
exp, such that formulas form a strict syntactic superset of all boolean expressions.

The logical operators, namely notop and logop, are shared between the non-terminals exp
and formula. This causes a reduce-reduce conflict between exp and formula. We therefore
prioritise the production rules notop formula and formula binop formula over exp by
placing the former before the latter. These logical operators must be overloaded for both
expressions and formulas, in terms of their semantics.

The universal and existential quantifiers are followed by args and a sub-formula. The
args is an existing non-terminal used for function calls and definitions B.1, which we reuse
here for the quantifiers. We reserve the keywords forall and exists in addition to the
existing keywords, although this may technically break backward compatibility.

Theorems and lemmas are defined using the theorem and lemma keywords, respectively.
These top-level constructs specify theorem statements with formula, optionally annotated
with hints. The thmid is an alias for id in the DSL.

Predicates are defined using the formula keyword, closely resembling function definitions.
While functions map arguments to an exp, predicates map arguments to a formula. Unlike
function definitions, predicate definitions do not require their return type to be explicitly
specified in the declaration.

Rule invocations are represented by a syntax nearly identical to that of premises but are
preceded by the @ symbol. This symbol, which is neither an atom nor used elsewhere
in the syntax, is required to disambiguate rule invocations from custom notations in the
DSL.

To illustrate the need for such disambiguation, consider a version of the syntax without the
@ symbol, like (Config_ok : |- config : t?). Note that Config_ok is a valid varid
and : is a valid atom that can be used within expressions to form custom notations. This
leads to a shift-reduce conflict between custom notations and rule expressions, because
(Config_ok : |- config : t?) can be parsed both as a custom notation of the form
varid ":" exp, or as a rule expression with the syntax relid ":" exp.
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This is a primary example of the tradeoff between readability and expressibility of the
SpecTec DSL. There are several solutions to this problem, but none are ideal and are thus
omitted here for brevity. For the purposes of this project, we adopt the @ symbol as a
temporary solution.

def ::=
...
"formula" "$" defid params
"formula" "$" defid args "=" formula
...
"theorem" thmid hint* "=" formula
"lemma" thmid hint* "=" formula
"theorem" thmid hint+
"lemma" thmid hint+

notop ::= "~"
logop ::= "/\" | "\/" | "=>" | "<=>"

exp ::=
notop exp
exp logop exp
...

formula ::=
notop formula
formula logop formula
exp
"@" "(" relid ":" exp ")"
"forall" args formula
"exists" args formula

Figure 3.31: Initial design of basic formulas

This initial design outlined in Figure 3.31 is satisfactory but poses several issues due to
the syntactic distinction between exp and formula. Notably, the similarities between fo ⌋

rmula and exp, as well as between predicate and function definitions, imply that there are
substantial duplications in handling these constructs. This not only introduces changes
that are not necessarily minimal but also harms the maintainability of the SpecTec code-
base.

Consequently, Figure 3.32 presents an alternative design that addresses these issues by
drastically simplifying the syntax. The key insight is that the syntactic distinction between
formula and exp is in fact unnecessary.

For instance, Isabelle/HOL treats all first-order logic formulas simply as boolean terms,
which is illustrated in Figure 3.33. In Isabelle/HOL, quantifiers such as All and Ex are
represented as higher-order boolean-valued functions taking a predicate, which is itself
another boolean-valued function [Isa]. This reflects the model theoretic approach of logic,
where every formula is assigned a single logical truth. After all, the syntactic distinction
is only necessary in systems that interpret formulas differently, such as those based on
dependent types.

In this alternative design, rule invocations are represented as exp with bool type, and
similarly for expressions quantified by forall and exists. There is no longer ambiguity
concerning the operators in notop and logop, nor is there a need to re-implement operator
handling for formula. Predicates can be defined using the syntax for function definitions,
as functions may return arbitrary exp. However, this does not imply that basic formulas
can be used wherever exp is permitted. During validation it remains necessary to enforce
that rule expressions and quantifiers do not appear in invalid places, such as in function
arguments.

def ::=
...
"theorem" thmid ":" exp hint*
"lemma" thmid ":" exp hint*
"theorem" thmid hint* "=" exp
"lemma" thmid hint* "=" exp

exp ::=
...
"@" "(" relid ":" exp ")"
forall args exp
exists args exp

Figure 3.32: Alternative design of basic formulas
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definition All :: "('a => bool) => bool"
where "All P == (P = (%x. True))"

definition Ex :: "('a => bool) => bool"
where "Ex P == !Q. (!x. P x --> Q) --> Q"

Figure 3.33: Definitions of All and Ex in Isabelle/HOL

Possible Designs for Iterated Formulas

Iterated formulas in this context correspond to iterated premises in the DSL, allowing us
to express that a property holds for each element in a sequence.

Figure 3.34 shows the design of iterated formulas. The syntax of iterated formulas is
identical to that of iterated premises, but they can be used within exp to form arbitrary
boolean expressions.

The @ symbol is again required for disambiguation. To illustrate the need for such disam-
biguation, consider an alternative syntax without the @ symbol, like (Type_ok: |- type
: ft')*. This can be interpreted in two ways — either as a sequence of boolean expres-
sions of type bool*, or as a conjunction over these boolean expressions with type bool.
In other words, it is not syntactically obvious whether a sequence of boolean expressions
should be left as a sequence or folded into a single boolean value.

exp ::=
...
"@" "(" exp ")" iter*

Figure 3.34: Initial design of iterated formulas

This serves as another example of the trade-off between readability and expressiveness in
the SpecTec DSL. While it is possible to eliminate the @ symbol by introducing appropriate
semantic rules, these implicit rules are likely to introduce unexpected behaviour and di-
rectly conflict with the bidirectional typing that the SpecTec compiler applies to operator
expressions. These solutions are therefore not ideal and omitted in this section.

Instead, a proper solution would be to introduce generic fold operators into the DSL.
For instance, we could define a unary “big and” operator //\\, such that expressions
like //\\ (@(Type_ok:- type : ft’))*| represent a fold of a sequence of boolean values
by conjunction. However, we will not implement this mechanism in this project, as the
handling of these operators requires a generic implementation in individual backends,
which adds unnecessary complexity.

Possible Designs for Theorem Definitions

The existing syntax for theorem definitions, as presented in Figure 3.31, can be further
simplified by defining theorems as zero-ary predicates.

This approach is illustrated in Figure 3.35. In contrast to theorem provers like Coq, this is
possible in the SpecTec DSL because formulas are treated as boolean expressions. The pr ⌋

oof hint annotations such as hint(proof "theorem") and hint(proof "lemma") enable
us to specify that these zero-ary predicates should be rendered as theorems, rather than
as boolean constants.

This approach is ideal as it introduces minimal changes to the DSL syntax, but it can
often lack readability, especially when multiple hints are involved. In this project, we
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will implement both syntaxes for theorem definitions, as supporting both does not lead to
significant duplication.

theorem t_progress =
forall (s, f, admininstr*, t?) ...

def $t__progress' : bool hint(proof "theorem")
def $t__progress' =

forall (s, f, admininstr*, t?) ...

Figure 3.35: Definition of theorems as zero-ary predicates

Final Design

The final design of the first-order logic constructs is illustrated in Figure 3.36. Examples of
theorem and predicate definitions in the SpecTec DSL are provided in Figure 3.37.

Note that predicates such as $not__lf__return() use double underscores __ because sin-
gle underscores _ are reserved for rendering subscripts in LATEX and prose backends.

def ::=
...
"theorem" thmid ":" exp hint*
"lemma" thmid ":" exp hint*
"theorem" thmid hint* "=" exp
"lemma" thmid hint* "=" exp

exp ::=
...
"@" "(" relid ":" exp ")"
"@" "(" exp ")" iter*
forall args exp
exists args exp

Figure 3.36: Final design of first-order logic constructs

def $not__lf__return(admininstr*) : bool
def $not__lf__return(admininstr*) =

forall (val*, l, admininstr'*)
admininstr* =/= val* (RETURN) admininstr'*

theorem t_progress =
forall (s, f, admininstr*, t?)
@(Config_ok: |- s; f; admininstr* : t?) =>
$terminal__form(admininstr*) \/
exists (s', f', admininstr'*)
@(Step: s; f; admininstr* ~> s'; f'; admininstr'*)

Figure 3.37: Examples of theorem definitions in DSL

3.3.2 Lexing and Parsing

The SpecTec toolchain makes use of the ocamllex [dReIeeA23] and menhir libraries [PRG24].
The ocamllex is the standard lexer used by the OCaml compiler, while menhir is a mod-
ern alternative to ocamlyacc, offering improved support for error messages and conflict
resolution.

Figures 3.38 and 3.39 present the DSL extensions of the lexical tokens and the context-free
grammar in BNF. The tokens for forall and exists include the left parenthesis of args
because id is defined by a regular expression that matches any upper-case or lower-case
letters, including the keywords forall and exists. This is a practical limitation rather
than a theoretical one.

Operator precedence in exp is enforced by recursively splitting the non-terminal exp,
ordered from the least binding to the most binding. exp_rel represents the least binding
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level, while exp_prim corresponds to the most binding level. Iterated formulas fall under
exp_post, since its trailing iter* can be regarded as a post-fix operator. forall and
exists belong to exp_un because quantifiers behave like unary operators.

Note that, since menhir uses right-most derivation as an LR(1) parser, forall and exists
technically have the lowest precedence among all operators. For example, exists (m) n
= m * 2 would be correctly parsed as (exists (m) (n = m * 2)) rather than ((exists
(m) (n)) = m * 2).

atmark ::= "@"
forall_lparen ::= "forall ("
exists_lparen ::= "exists ("
theorem ::= "theorem"
lemma ::= "lemma"

Figure 3.38: Extension of DSL tokens for first-order logic constructs

def ::=
...
"theorem" thmid ":" exp hint*
"lemma" thmid ":" exp hint*
"theorem" thmid hint* "=" exp
"lemma" thmid hint* "=" exp

exp_prim ::= ...
"@" "(" relid ":" exp ")"

exp_post ::= ...
"@" "(" exp_atom ")" iter*

exp_atom ::= exp_post | ...
exp_seq ::= exp_atom | ...
exp_un ::= exp_seq | ...

"forall (" arg*"," ")" exp
"exists (" arg*"," ")" exp

exp_bin ::= exp_un | ...
exp_rel ::= exp_bin | ...
exp ::= exp_rel

Figure 3.39: Extension of DSL syntax for first-order logic constructs

Finally, the EL was extended accordingly. Its details are omitted since the EL is only an
abstract syntax tree of the DSL,

3.3.3 Elaboration and Validation

The next phase of the translation is the elaboration from EL to IL, as well as the validation
of the translated IL. Figure 3.40 illustrates the extension of the IL syntax.

The quantifiers and theorem definitions contain bind*. The forall and exists quantifiers
only generate binds for the quantified variables appearing in args, while the theorem and
lemma definitions capture any remaining free variables. This semantics is convenient for
downstream translation, particularly for the theorem prover backend.

Rule expressions are almost identical to rule invocations in premises, with their custom
notation divided into a mixop and a tuple of exp. Iterated formulas are also almost
identical to iterated premises.

def ::=
...
"theorem" thmid bind* exp
"lemma" thmid bind* exp

iterexp ::=
iter (id, typ)*

exp ::=
...
id ":" mixop exp
exp iterexp (; iterated formulas ;)
forall bind* arg* exp
exists bind* arg* exp

Figure 3.40: Extension of IL syntax for first-order logic constructs
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The elaboration of quantifiers begins by introducing a local environment that collects type
information for both free and bound variables within the current scope. It then proceeds
to recursively elaborate its subterms, namely args and exp. Unlike other occurrences of
args, the types of the quantified variables are not declared and are therefore unknown
from the top down. Instead, these types must be inferred from the bottom up.

The validation of elaborated quantifiers also begins by introducing a local environment,
ensuring that any quantified variables appearing outside the overall quantified expression
are classified as unbound. It then proceeds to validate each of its subterms recursively,
namely bind*, arg* and exp.

Additionally, it verifies that the inner exp has the expected type bool, and that the overall
expression also conforms to this type. It then ensures that the first-order logic constructs
do not appear in unintended contexts. Currently, these constructs are only allowed within
the body of function definitions and theorem or lemma definitions, but this restriction
may be relaxed in the future.

The validation of theorem definitions proceeds similarly to that of other top-level con-
structs, except that it additionally ensures theorem names are not referenced elsewhere,
as these names refer to boolean expressions that are expected to be true and thus effectively
synonymous with the boolean constant true. The remaining details of the elaboration
and validation are omitted for brevity.

The following modules involved in elaboration, validation, and the middlend passes have
been updated to support the first-order logic constructs. The specifics of these changes
are likewise omitted.

• Collection of free and “determinate” variables
• Collection of dimensions of iterated variables
• Equality between AST nodes
• Iterator pattern utility
• Variable substitution utility

• Generation of side-conditions
• Totalisation of def function definitions
• Substitution of subsumptions by the corresponding function calls
• Substitution of “the” operators by the correponding side conditions
• Substitution of wildcards

3.3.4 Coq Translation

The next phase of the translation involves transforming the IL into the MIL. Figure 3.41
shows the extensions to the MIL. Notably, rule invocations and iterated formulas do not
require additional constructs, as they are represented by the application of existing Coq
terms.

A key addition to the MIL is the boolean operators such as ~~ and &&, which were pre-
viously omitted since all logical expressions were represented using their propositional
counterparts such as ~ and /\. These boolean operators are now necessary because some
predicates are better interpreted as decidable, returning bool rather than Prop.
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def ::=
...
"Theorem" ident binder* term
"Lemma" ident binder* term

term ::=
...
"forall" binder* term
"exists" binder* term

basic_term ::=
...
"~~"
"&&"
"||"
"==>"
"==" (; equivalence ;)
"==" (; equiality ;)
"!="

Figure 3.41: Extension of MIL syntax for first-order logic constructs

The first-order logic constructs are treated as boolean expressions in the DSL, which
significantly simplifies its semantics. In Coq, however, a clear distinction exists between
decidable (bool) and potentially undecidable (Prop) statements, which must be handled
appropriately. While it is possible to interpret every boolean expression in the DSL as
Prop in Coq, this is undesirable because bool predicates in Coq are easier to work with
in proofs, as they can be reduced by Coq’s execution engine automatically.

Consider the examples listed in Figure 3.42. In this case, $is__const() and $const__li ⌋

st() should be translated as bool, whereas $not__lf__br() would need to be translated
as Prop.

def $is__const(admininstr) : bool
def $is__const(CONST valtype val_) = true
def $is__const(admininstr) = false

def $const__list(admininstr*) : bool
def $const__list(eps) = true
def $const__list(admininstr admininstr'*) =

$is__const(admininstr) /\ $const__list(admininstr'*)

def $not__lf__br(admininstr*) : bool
def $not__lf__br(admininstr*) =

forall (val*, l, admininstr'*)
admininstr* =/= val* (BR l) admininstr'*

Figure 3.42: Examples of predicate definitions in the DSL

To accommodate this semantics, the transformation of exp in the IL to term in the MIL
begins by checking whether the body of function or theorem definitions contains first-order
logic constructs. When such constructs are detected, the logical operators are prioritised
to be interpreted as Prop rather than bool, and vice versa.

For instance, the operator /\ in $const__list() would be translated to /\ rather than
&&, whereas the operator =/= in $not__lf__br() would be translated to <> rather than
!=. The boolean equality and inequality operators can be applied to arbitrary data types,
due to the EqType instances we auto-generated in the previous section.

The transformation of the forall and exists quantifiers is straightforward. The binders,
which represent the quantified variables, are directly generated from bind* rather than
from arg*. Rule expressions are simply transformed into applications of dependent terms
to the predicate. Iterated formulas are transformed into all and all2, respectively.

The transformation of theorem definitions inserts a forall quantifier for the variables
in the top-level bind*. This mechanism allows us to omit explicit quantification of vari-
ables, analogous to those introduced by Variable or Hypothesis in Coq. Finally, the
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Coq backend also supports theorem definitions via proof hints, as demonstrated in Fig-
ure 3.35.

Figure 3.43 shows an example of the results of the Coq translation, generated from the
DSL source in Figure 3.37. Since IL2Coq was not originally developed with SSReflect in
mind, the generated code may contain a mixture of Coq and SSReflect syntaxes.

Definition fun_not_lf_br (v___0 : (list admininstr)) : Prop :=
match (v___0) with

| (v_admininstr) => forall (v_val : (list val)) (v_l : labelidx)
(v_admininstr' : (list admininstr)), (v_admininstr <> (@app _
(list__val__admininstr v_val) (@app _ [(admininstr__BR v_l)]
v_admininstr')))

↪→

↪→

↪→

end.

Theorem t_progress : forall (v_s : store) (v_f : frame) (v_admininstr : (list
admininstr)) (v_t : (option valtype)), ((Config_ok (config__ (state__ v_s
v_f) v_admininstr) v_t) -> ((fun_terminal_form v_admininstr) \/ exists
(v_s' : store) (v_f' : frame) (v_admininstr' : (list admininstr)), (Step
(config__ (state__ v_s v_f) v_admininstr) (config__ (state__ v_s' v_f')
v_admininstr')))).

↪→

↪→

↪→

↪→

↪→

Proof. Admitted.

Figure 3.43: Results of Coq translation of first-order logic constructs

3.3.5 LaTeX Rendering

The next phase is to implement an alternative translation path targeting LATEX. The
LATEX code is generated directly from the EL and does not undergo the elaboration or
validation processes described previously.

Figure 3.44 shows the LATEX code generated from the DSL in Figure 3.37, together with
its rendered output. The splice backend is extended to support rendering theorems in
LATEX, which allows splice commands of the form $${theorem: name} to specify where
the corresponding LATEX code should be expanded in reStructuredText documents.

The LATEX backend supports customising the display name of theorems via desc hints,
as illustrated in Figure 3.46, which is rendered in a side-box next to the LATEX formula.
The LATEX backend also supports theorem definitions via proof hints, as shown in Fig-
ure 3.35.

Since the statements of theorems and auxiliary lemmas tend to be lengthy, a custom line-
break logic is implemented for rendering exp. In particular, operators and quantifiers may
insert two types of markers for line breaks — mustbreak and allowbreak.

As the name suggests, mustbreak indicates a point where a line break must be inserted,
whereas allowbreak is conditional, which may insert a line break if the character count in
the current line exceeds a predefined threshold. Note, however, that the character count
is calculated in the LATEX source code and is therefore only an approximation.
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\begin{array}{@{}l@{}l@{}}
\mbox{(Progress)} & \forall s, f, {{\mathit{instr}}^\ast}, {t^?}.{ \vdash

}\;s ; f ; {{\mathit{instr}}^\ast} : {t^?} \Rightarrow \\[0.8ex]↪→

&{\mathrm{terminal\_form}}({{\mathit{instr}}^\ast}) \lor \exists {s'},
{f'}, {{{\mathit{instr}}'}^\ast}.s ; f ; {{\mathit{instr}}^\ast}
\hookrightarrow {s'} ; {f'} ; {{{\mathit{instr}}'}^\ast}

↪→

↪→

\end{array}

(Progress)∀s, f, instr∗, t?.⊢ s; f ; instr∗ : t? ⇒
terminal_form(instr∗) ∨ ∃s′, f ′, instr ′∗.s; f ; instr∗ ↪→ s′; f ′; instr ′∗

Figure 3.44: Results of LATEX translation of first-order logic constructs

3.3.6 Prose Rendering

The final phase involves implementing an additional translation path targeting prose de-
scriptions.

Unlike LATEX formulas, prose descriptions are generated from the IL for validation rela-
tions, such as Config_ok, and from the AL for execution relations, such as Step_pure.
This distinction arises because validation descriptions require typing information embed-
ded in the IL, whereas execution descriptions align more naturally with the imperative
representation of the AL. In the case of theorem definitions, prose descriptions are gener-
ated from the IL.

The prose backend introduces a new intermediate representation, called para, as shown
in Figure 3.45. This representation roughly corresponds to natural language and enables
simplification of prose descriptions by manipulating structured data rather than raw text.
para resembles exp in the IL but has the following notable differences:

• Connectives like "and" and "if" take multiple para elements rather than a single
para. This allows us to simplify descriptions of the form “if X, if Y, then Z” to “if
X and Y, then Z” recursively, thereby enhancing readability.

• Special constructs like "is valid with" and "steps to" are introduced for de-
scribing validation and execution relations. This enables these frequently occurring
relations to be expressed in a more natural format.

The prose backend supports prose hints on predicate definitions, as illustrated in Fig-
ure 3.46. This allows predicates to be described in natural language by filling the place-
holders % with their arguments in left-to-right order. For example, $terminal__form(ad ⌋

mininstr*) with prose hint hint(prose "% is in terminal form") would be rendered
as “admininstr∗ is in terminal form”.

Additionally, the prose backend supports customising the display name of theorems via
desc hints, which is rendered in bold text within parentheses. Similar to the Coq backend,
it also supports theorem definitions via proof hints, as illustrated in Figure 3.35.
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cmpop ::=
"equal to"
"not equal to"
"less than"
"greater than"
"less than or equal to"
"greater than or equal to"

para ::=
exp
exp cmpop exp
"not" para
"and" para*
"or" para*
"if" para* "then" para
para "iff" para
"for each" (exp, exp)* para
"for all" exp* para
"there exists" exp* para
exp "is valid with" exp? exp? exp?
exp "steps to" exp
"relation" id exp "holds"
"predicate" id exp "holds"
string exp*

Figure 3.45: Definition of para in prose intermediate representations

def $terminal__form(admininstr*) : bool
hint(prose "% is in terminal form")

def $terminal__form(admininstr*) = ...

theorem t_progress hint(desc "Progress") = ...

Figure 3.46: Examples of desc and prose hints in DSL

Figure 3.47 shows the prose description in reStructuredText generated from the DSL in
Figure 3.37, along with its rendered result in LATEX. The splice backend is extended to
support rendering theorems in prose, which allows splice commands of the form $${t ⌋

heorem-prose: name} to specify where the corresponding prose description should be
expanded in reStructuredText documents.

**Theorem (Progress)**.
For all :math:`s`, :math:`f`, :math:`{{\mathit{instr}}^\ast}`, :math:`{t^?}`,

if :math:`{{\mathit{instr}}^\ast}` is valid with type :math:`{t^?}` under
the context :math:`f` and the store :math:`s`, then
:math:`{{\mathit{instr}}^\ast}` is in terminal form or there exists
:math:`{s'}`, :math:`{f'}`, :math:`{{{\mathit{instr}}'}^\ast}` such that
:math:`((s,\, f),\, {{\mathit{instr}}^\ast})` steps to :math:`(({s'},\,
{f'}),\, {{{\mathit{instr}}'}^\ast})`

↪→

↪→

↪→

↪→

↪→

↪→

Theorem (Progress) For all s, f , instr∗, t?, if instr∗ is valid with type t? under the
context f and the store s, then instr∗ is in terminal form or there exists s′, f ′, instr ′∗

such that ((s, f), instr∗) steps to ((s′, f ′), instr ′∗)

Figure 3.47: Results of prose translation of first-order logic constructs

3.4 Template Mechanism

The final extension to the SpecTec toolchain introduced in this project is the template
mechanism. This section details the design and implementation of template constructs,
designed to eliminate repetitive definitions in the SpecTec DSL [YSL+24].
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The primary motivation for this mechanism is to automate the definition of boilerplate
lemmas. Consider, for example, individual cases or inductive steps within the preser-
vation proof [Cup24], some of which are translated in the DSL in Figure 3.48. These
auxiliary lemmas often contain repetitive fragments in their statements, as they arise as
specialisations of the original statement prior to case analysis or induction.

Specifying these auxiliary lemmas in the DSL offers finer control over proof structure and
ensures consistency across theorem provers. However, manually undertaking this process
is both laborious and difficult to maintain. Furthermore, the repetitive definitions of
auxiliary lemmas arguably conflict with the purpose of the SpecTec DSL as a unified
“single source of truth”.

lemma Step_pure__br_if_true_preserves =
forall (s, C, c, l, ft)
@(Admin_instrs_ok: s; C |- (CONST (INN I32) c) (BR_IF l) : ft) =>
@((CONST (INN I32) c) (BR_IF l) ~> (BR l)) =>
c =/= 0 =>
@(Admin_instrs_ok: s; C |- (BR l) : ft)

lemma Step_pure__br_if_false_preserves =
forall (s, C, c, l, ft)
@(Admin_instrs_ok: s; C |- (CONST (INN I32) c) (BR_IF l) : ft) =>
@((CONST (INN I32) c) (BR_IF l) ~> eps) =>
c = 0 =>
@(Admin_instrs_ok: s; C |- eps : ft)

Figure 3.48: Examples of boilerplate lemmas in preservation proof

The need to avoid repetition is not limited to auxiliary lemmas. Figure 3.49 presents the re-
duction rules for binary operators on vector values in the Wasm 2.0 specification [Wor22a].
These reduction rules share very similar structures, and the same applies to other opera-
tors. As future versions of Wasm add support for wider SIMD widths, such as 256 bits and
512 bits, maintaining these reduction rules may become increasingly difficult. A generic
template mechanism would therefore allow us to eliminate such duplication within the
DSL.

syntax vectype =
| V128

rule Step_pure/binop-val:
(CONST nt c_1) (CONST nt c_2) (BINOP nt binop) ~> (CONST nt c)
-- if $binop(nt, binop, c_1, c_2) = c

rule Step_pure/vvbinop:
(VCONST V128 c_1) (VCONST V128 c_2) (VVBINOP V128 vvbinop) ~> (VCONST V128 c)
-- if c = $vvbinop(V128, vvbinop, c_1, c_2)

Figure 3.49: Examples of reduction rules of vector instructions [YSL+25]

This section thus introduces new meta-level template constructs in the DSL, designed
to capture repetitive patterns through a generic mechanism handled natively by the
SpecTec compiler. The syntax and semantics of both the DSL and IL will be extended
accordingly. All of these changes will be realised by extending SpecTec’s OCaml code-
base [YSL+25].

Figure 3.50 provides an overview of the parts of the SpecTec toolchain that have been
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extended in this section of the project. The scope of the template mechanism is focused
primarily on the frontend and middlend of the SpecTec toolchain.

Figure 3.50: Scope of template mechanism in SpecTec toolchain inspired by SpecTec
paper [YSL+24]

3.4.1 Design Choices

This section discusses possible designs for the template mechanism, revisiting assumptions
and exploring the designs from first principles.

DSL-level or MIL-level Definitions

Similar to the previous section, there is a fundamental question that must be addressed
before considering any other designs — whether theorems should be maintained in the
DSL or in the MIL.

The drawbacks of the MIL-level approach, as discussed in the previous section on the
first-order logic constructs, also apply to the template mechanism in general.

A major benefit of the DSL-level approach, on the other hand, is that the template
mechanism can be applied not only to theorem definitions but also to syntax, relation
and function definitions. These definitions are interpretable by various backends and
enables broader potential applications of the template mechanism beyond boilerplate lem-
mas.

Another argument in favour of the DSL-level approach is that restricting the mechanism
to theorem definitions does not significantly simplify the implementation. There is thus
little justification for imposing such limitations on the template mechanism.

We therefore conclude that the DSL is once again the appropriate format for this pur-
pose.

DSL-level or IL-level Expansion

Another key design choice concerns whether template definitions should be expanded at the
DSL level or at the IL level. Template expansion refers to the process of filling in the holes
within template definitions, thereby instantiating them as non-template definitions.

The DSL-level expansion is primarily restricted to textual expansion, similar to macros in
the C programming language. This is because the EL lacks details like typing information,
which are essential for performing semantic analysis. This approach would therefore serve
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as an ad hoc solution, which can be implemented outside SpecTec’s OCaml codebase by
using an external template engine such as Mustache [HSW+24]. This would simplify the
implementation significantly.

This textual expansion is also language-agnostic, allowing us to transform parts of the
code beyond the semantics of the DSL. Consider the DSL in Figure 3.51, which illustrates
a hypothetical template construct {{ rule_name }} embedded within an identifier. By
exploiting this flexibility of textual expansion, we can also expand multiple expressions
separated by commas, or substitute expressions in a way that overrides operator prece-
dence, for instance.

template
lemma Step_pure__{{ rule_name }}__preserves = ...

Figure 3.51: Example of textual expansion in DSL

However, there is a practical limitation that the EL cannot be reconstructed from the
IL. This is a problem because the IL contains information required for semantic analysis,
which is essential for collecting template meta-variables. Substituting these template meta-
variables back into the DSL would require reconstructing IL fragments into EL fragments,
which is impractical since the elaboration process is not injective. There are several ways
to approximate this reconstruction, but they end up complicating the implementation to
the extent that the DSL-level approach is no longer ideal.

On the other hand, the IL-level expansion is not subject to such limitations. It would
operate as a semantic expansion, enabling semantic checks both before and after expan-
sion. This not only ensures that no ill-formed templates are instantiated but also makes
error messages more accurate by detecting non-template issues first. The implementation
will be tightly integrated into the semantics of the DSL, offering enhanced type safety,
debuggability and maintainability. Furthermore, this approach enables us to model the
template mechanism within a meta-theory of the DSL, which will be necessary to establish
the correctness of the overall translation process.

We therefore conclude that the advantages of the IL-level approach outweigh those of the
DSL-level approach, given the technical challenge associated with the latter.

Logic-ful or Logic-less Expansion

Another important design choice concerns whether to allow meta-level logical handling
within the template mechanism or to restrict it to logic-less templates.

Figure 3.52 presents a hypothetical example of logic-less template definitions. In this
design, template definitions consist of placeholders in the form {{ ... }}, which are
substituted with the matching template meta-variables supplied by the SpecTec compiler.
This results in a simple notation requiring minimal modifications to the DSL syntax.

A potential downside of this design is the tight coupling between meta-variables and
template definitions. rule_before and rule_after, for example, can only be defined
for reduction relations and are primarily restricted to use by auxiliary lemmas. However,
this coupling is inevitable in logic-less templates to some extent, as every variation of the
existing template meta-variables must be addressed by introducing new ones, rather than
being handled within the DSL itself.
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template
lemma Step_pure__preserves =

forall (S, C, c, tf)
@(S; C |- {{ rules_before }} : tf) =>
@({{ rules_before }} ~> {{ rules_after }}) =>
{{ rules_premises }} =>
@(S; C |- {{ rules_after }} : tf)

Figure 3.52: Example of logic-less template definitions

While this tight coupling is undesirable, we believe it is a necessary compromise to preserve
simplicity. We would otherwise require a meta-level system capable of analysing the AST
within the DSL, which is far more expressive and powerful than necessary.

Figure 3.53 demonstrates this point with a hypothetical example of logic-ful template
definitions, whose syntax is inspired by Python’s Jinja2 [Pal24] and OCaml. This would
amount to designing an entirely new meta-language integrated into the SpecTec DSL,
which is impractical.

{% for rule in relations.Step_pure.rules %}
lemma Step_pure__preserves =

forall (s, C, ft, {{ rule_freevars rule }})
@(Admin_instrs_ok: s; C |- {% match rule.exp with (e1, "~>", e2) -> e1 %} : ft) =>
@(Step_pure: {% match rule.exp with (e1, "~>", e2) -> e1 %} ~>

{% match rule.exp with (e1, "~>", e2) -> e2 %}) =>
{{ fold_left (fun ps p -> ps "=>" p) rule.premises }} =>
@(Admin_instrs_ok: s; C |- {% match rule.exp with (e1, "~>", e2) -> e2 %} : ft)

{% endfor %}

Figure 3.53: Example of logic-ful template definitions

Possible Designs

Finally, the design of the templates can be discussed. Figure 3.54 presents the initial
design of the template mechanism, accompanied by an example in Figure 3.55.

The syntax is largely inspired by that of Mustache templates [HSW+24], although its
semantics differ in that a single template definition expands into multiple non-template
definitions. The template meta-variables are organised within hierarchical scopes, starting
with top-level scopes such as relations.

Currently, these template constructs can only be substituted by expressions in the DSL.
This is a practical restriction intended to simplify the implementation, and we may allow
substitution by types and other elements in the future.

def ::=
...
"template" def

exp ::=
...
"{{" tmplid*"." "}}"

Figure 3.54: Initial design of template constructs
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template
lemma Step_pure__preserves =

forall (S, C, c, tf)
@(S; C |- {{ relation.Step_pure.rules.before }} : tf) =>
@({{ relation.Step_pure.rules.before }} ~> {{ relation.Step_pure.rules.after }}) =>
{{ relation.Step_pure.rules.premises }} =>
@(S; C |- {{ relation.Step_pure.rules.after }} : tf)

Figure 3.55: Examples of initial design of template constructs

The substitution of template constructs is not straightforward because the substituted
expressions may contain free variables. It is not appropriate to implicitly quantify these
free variables with a forall quantifier at the top level, since these variables may not be
intended to be universally quantified at that level, or alternatively, may be intended to be
existentially quantified instead.

To address this, we introduce an additional template meta-variable, freevars, within ⌋

relations.Step_pure.rules. This enables the quantification of these free variables at
arbitrary positions, as demonstrated in Figure 3.57. The ellipsis ... preceding the tem-
plate meta-variable is a new syntax for variable-length template expressions, indicating
that the sequence of free variables should be expanded into multiple arg’s separated by
commas, rather than a single arg.

Furthermore, we introduce a wildcard syntax, *, which can be used within template meta-
variables, as illustrated in Figure 3.57. This explicitly specifies the scopes under which
the template meta-variables are iterated during expansion. For better organisation, this
wildcard syntax and the variable-length template syntax are extracted into a new non-
terminal called slot.

def ::=
...
"template" def

exp ::=
...
"{{" slot "}}"

slot ::=
tmplid
slot "." tmplid
slot "." "*"
"..." slot

Figure 3.56: Alternative design of template constructs

template
lemma Step_pure__preserves =

forall (s, C, ft, {{ ...relations.Step_pure.rules.*.freevars }})
@(Admin_instrs_ok: s; C |- {{ relations.Step_pure.rules.*.before }} : ft)

=>↪→

@(Step_pure: {{ relations.Step_pure.rules.*.before }} ~> {{
relations.Step_pure.rules.*.after }}) =>↪→

{{ relations.Step_pure.rules.*.premises }} =>
@(Admin_instrs_ok: s; C |- {{ relations.Step_pure.rules.*.after }} : ft)

Figure 3.57: Examples of alternative design of template constructs

The name of the definitions instantiated from templates is given by appending a suffix in-
ferred from the position of the wildcard *. For example, the suffix br_if_true is appended
for relations.Step_pure.rules.br_if_true.premises and relations.Step_pure.r ⌋

ules.*.premises, resulting in Step_pure__preserves__br_if_true.
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Final Design

The final design of the template mechanism is identical to that illustrated in Figures 3.56
and 3.57, and is therefore omitted in this section.

3.4.2 Lexing and Parsing

Figures 3.58 and 3.59 present the DSL extensions to the lexical tokens and the context-
free grammar in BNF. The def non-terminal recursively references itself to represent the
body of templated definitions. Template constructs are placed in exp_prim, as they are
intended to be the most tightly binding entity within exp.

The slot non-terminal represents template meta-variables in hierarchical scopes and in-
cludes the ellipsis (...) and wildcards (*). The slot is further divided into slot_do ⌋

ts to syntactically enforce that the variable-length marker ... only appears at the top
level.

template ::= "template"

Figure 3.58: Extension of DSL tokens for template constructs

def ::=
"template" def

exp_prim ::=
...
"{{" slot "}}"

exp ::= ...

slot_dots ::=
tmplid
slot_dots "." tmplid
slot_dots "." "*"

slot ::=
slot_dots
"..." slot_dots

Figure 3.59: Extension of DSL syntax for template constructs

Finally, the EL was extended accordingly. Its details are omitted as the EL is simply an
abstract syntax tree of the DSL,

3.4.3 Elaboration and Validation

The next phase of the translation involves elaboration from EL to IL, as well as validation
of the resulting IL. Figure 3.60 illustrates the extension of the IL syntax, which closely
mirrors that of EL. This extension is necessary because template constructs are expanded
through manipulation of the AST at the IL level.

A subtle issue in the elaboration process is that each exp, including template constructs,
must be assigned a corresponding type. This poses an issue, as the type of template
constructs such as {{ relations.Step_pure.rules.*.premises }} remains unknown
until they are substituted with the corresponding exp. To address this, we introduce and
assign a temporary bottom type before expansion. The bottom type is defined as a subtype
of all other types, thereby preventing type mismatch errors during validation.
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def ::=
"template" def

typ ::=
"bottom"

exp ::=
...
"{{" slot "}}"

slot ::=
id
slot "." id
slot "." "*"
"..." slot

Figure 3.60: Extension of IL syntax for first-order logic constructs

The elaboration of template constructs is trivial, involving an almost one-to-one transla-
tion, with the exception of the assignment of the bottom type.

The validation logic is modified to operate in two distinct phases — before and after
semantic substitution. This approach allows non-template errors to be detected prior
to expansion, ensuring that the subsequent template middlend does not operate on an
ill-formed IL.

The validation of template constructs is also straightforward. In addition, we enforce that
top-level template meta-variables, such as relations, cannot appear alone in the form {{
relations }}.

Furthermore, we ensure that the name of a template definition, such as Step_pure__pr ⌋

eserves, is not directly referenced by other definitions. This is necessary as any reference
to a template definition prior to expansion would be invalid. We additionally verify that
template definitions do not reference themselves recursively — although recursion is pro-
hibited in theorem definitions, it may occur in syntax and function definitions.

3.4.4 Template Middlend

The template middlend is responsible for semantic expansion, processing the input IL to
produce a template-free output IL. It is invoked after the other middlends have processed
non-template definitions, thereby allowing auxiliary transformations to be performed be-
forehand.

Environment Pass

The template middlend begins with the environment pass, whose role is to analyse the
non-template definitions in the input IL and collect the necessary information for template
meta-variables.

Figure 3.61 presents the template meta-variables that are currently available. Asterisks
(*) indicate that the meta-variables are accessible under any scope. Some meta-variables
are restricted to specific scopes, such as before and after, which are only available within
the rules Step_pure and Step_read.
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Meta-variable Type Description
definitions.*.name text Name of the function definition
syntaxes.*.name text Name of the syntax type definition
relations.*.name text Name of the relation definition
relations.*.rules.*.name text Name of the rule definition
relations.*.rules.*.freevars tuple Free variables occuring in the rule
relations.*.rules.*.premises bool Premises of the rule
relations.Step_pure.rules.*.before admininstr* Redex of the reduction rule
relations.Step_pure.rules.*.after admininstr* Contractum of the reduction rule
relation.Step_read.rules.*.before admininstr* Redex of the reduction rule
relations.Step_read.rules.*.after admininstr* Contractum of the reduction rule

Figure 3.61: List of available template meta-variables

The collection of most template meta-variables is straightforward. name is extracted di-
rectly from the id of each definition in the IL, while before and after are found by
pattern matching against the body of each rule within Step_pure and Step_read. free ⌋

vars is collected by identifying the free variables appearing in both the body and premises
of each rule.

The collection of premises, however, is more involved. This process begins by trans-
forming each premise of the rule into an equivalent boolean expression, according to the
following rules:

• If the premise is "if" exp, it is converted into exp.
• If the premise is "otherwise", it is replaced by the negation of the disjunction of

the preceding premises.
• A rule invocation relid ":" exp is converted into a rule expression "@" "(" relid

":" exp ")".
• An iterated premise "(" premise ")" iter* is converted into an iterated formula

"@" "(" exp ")" iter*.

The handling of otherwise premises involves collecting the preceding premises, which,
in the context of the Step_pure and Step_read relations, refer to the premises of the
preceding rules that share the same redex. This is achieved by maintaining a mapping
from each redex to its corresponding premises, which is then looked up when the current
rule contains an otherwise premise.

The semantics of these otherwise premises are relevant only within the Step_pure and
Step_read relations, as other relations do not incorporate the notion of redexes. In
general, the interpretation of otherwise premises is delegated to individual backends,
which justifies the special handling in this case.

Finally, after the conversion, these boolean expressions are combined into a single boolean
expression by taking a conjunction. This is necessary because a template construct must
be substituted by a single exp during expansion.

These collected template meta-variables are then organised into a tree-like data structure
called slottree, whose definition is given in OCaml-based pseudocode in Figure 3.62.

The slotentry at each leaf contains the binds bind* of the free variables appearing in
the collected expression exp. These binds are essential for substituting the exp into the
holes of the template definitions, as explained later.
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type slotentry = (list bind, exp)
type slottree =

| LeafT (option slotentry)
| NodeT (map string slottree)

Figure 3.62: Definition of slottree in OCaml-based pseudocode

The binds are collected from the corresponding IL definition. However, this process is
complicated by the fact that binds may depend on other binds through the dependent
arguments of their types. For example, consider that c is free in a collected expression,
and the corresponding binds are given as {C : context, t : valtype, c : val_(t)}.
In this case, we must collect both c and t, since the type of c depends on t.

The collection of binds is therefore implemented by recursively identifying such depen-
dent binds until a fixpoint is reached, disregarding their order. This algorithm always
terminates because the binds in the IL are finite.

Slot Collection Pass

The next step is the slot collection pass, which handles the collection of the slots cor-
responding to the holes in the template definitions. This is implemented by recursively
traversing the input IL.

This preliminary pass is necessary because the scopes under which template expansion
should proceed remain unknown until all slots have been collected. For instance, the
template definition in Figure 3.57 expands by iterating over all rules under relations. ⌋

Step_pure.*, but this cannot be determined until all six of its slots are collected.

Combination Generation

The next step is the combination generation, which is responsible for enumerating all
possible combinations of the template meta-variables that can be substituted to produce
each instance of a template definition.

For instance, in Figure 3.57, we generate a combination of relations.Step_pure.rul ⌋

es.call_addr.before, relations.Step_pure.rules.call_addr.after, relations.S ⌋

tep_pure.rules.call_addr.premises and relations.Step_pure.rules.call_addr. ⌋

freevars for the rule call_addr, and similarly for br_if_true, br_if_false, and so
forth.

The template mechanism is not limited to an O(N) combination of template meta-
variables. With the wildcard * syntax, we should be able to produce O(N2) nested
combinations, such as in relations.*.rules.*.name, or even form an O(N2) Carte-
sian product of combinations, such as between relations.Step_pure.rules.*.name and
relations.Step_read.rules.*.name.

These extended uses of the wildcard * are motivated by Figure 3.63, which compares
the reduction rules of the vcvtop instruction for SIMD values in the Wasm 2.0 specifi-
cation [Wor22a].The full, half and zero reduction rules share similar structures, which
can become difficult to maintain as more SIMD widths are added. Instead, these reduction
rules can be written using templates, organising the template meta-variables in a hierarchy
like relations.Step_pure.rules.vcvtop.before.full.v128 and accessing them using
nested wildcards like relations.Step_pure.rules.vcvtop.before.*.*.
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rule Step_pure/vcvtop-full:
(VCONST V128 c_1) (VCVTOP (Lnn_2 X N_2) (Lnn_1 X N_1) vcvtop eps sx) ~>

(VCONST V128 c)↪→

-- if c'* = $lanes_(Lnn_1 X N_1, c_1)
-- if c = $invlanes_(Lnn_2 X N_2, $vcvtop(Lnn_1 X N_1, Lnn_2 X N_2, vcvtop,

sx, c')*)↪→

rule Step_pure/vcvtop-half:
(VCONST V128 c_1) (VCVTOP (Lnn_2 X N_2) (Lnn_1 X N_1) vcvtop hf sx?) ~>

(VCONST V128 c)↪→

-- if ci* = $lanes_(Lnn_1 X N_1, c_1)[$halfop(hf, 0, N_2) : N_2]
-- if c = $invlanes_(Lnn_2 X N_2, $vcvtop(Lnn_1 X N_1, Lnn_2 X N_2, vcvtop,

sx?, ci)*)↪→

rule Step_pure/vcvtop-zero:
(VCONST V128 c_1) (VCVTOP (nt_2 X N_2) (nt_1 X N_1) vcvtop eps sx? ZERO) ~>

(VCONST V128 c)↪→

-- if ci* = $lanes_(nt_1 X N_1, c_1)
-- if c = $invlanes_(nt_2 X N_2, $vcvtop(nt_1 X N_1, nt_2 X N_2, vcvtop,

sx?, ci)* $zero(nt_2)^N_1)↪→

Figure 3.63: Reduction rules for vector conversion operators in DSL [YSL+25]

Another motivation is illustrated in Figure 3.64. In the future, the vsplat and vextrac ⌋

t_lane-num reduction rules could be defined between any O(N2) pairs of CONST, VCONST
V128, VCONST V256 and VCONST V512, which can become difficult to manage. Instead,
these reduction rules can be written using templates once again, by organising the template
meta-variables like relations.Step_pure.rules.vsplat.before.v128 and relations ⌋

.Step_pure.rules.vsplat.after.v128 and taking a Cartesian product between rela ⌋

tions.Step_pure.rules.vsplat.before.* and relations.Step_pure.rules.vsplat ⌋

.after.*.

rule Step_pure/vsplat:
(CONST $unpack(Lnn) c_1) (VSPLAT (Lnn X N)) ~> (VCONST V128 c)
-- if c = $invlanes_(Lnn X N, $packnum(Lnn, c_1)^N)

rule Step_pure/vextract_lane-num:
(VCONST V128 c_1) (VEXTRACT_LANE (nt X N) i) ~> (CONST nt c_2)
-- if c_2 = $lanes_(nt X N, c_1)[i]

Figure 3.64: Reduction rules for splat and extract instructions in DSL [YSL+25]

We must therefore devise an algorithm capable of handling nested occurrences of the
wildcard *, as well as Cartesian products of two slots under different parent scopes. Note
that a Cartesian product should only be taken when the slots diverge, and not when they
share the same parent scope, such as between relations.Step_pure.rules.*.before
and relations.Step_pure.rules.*.after.

To facilitate this, we organise all the slots in a template definition by inserting them into
a prefix tree (also known as a trie), whose definition is given in Figure 3.65. For instance,
relations.Step_pure.rules.call_addr.before is split into relations, Step_pure, ⌋

rules, call_addr and before, and then inserted into the leaf node corresponding to this
path. The use of a prefix tree allows us to group slots by their parent scopes, ensuring
that a Cartesian product is only taken when the slots diverge.
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type slottrie =
| LeafP (option slot)
| NodeP (map string slottrie)

Figure 3.65: Definition of slottrie in OCaml-based pseudocode

The main procedure of this algorithm is presented in OCaml-based pseudocode in Fig-
ure 3.66. This algorithm is based on tree navigation by the path to a leaf node (similar
to XPath in XML[Moznd]) except that the path consists of multiple slots organised in a
prefix tree and may include wildcards *.

type subst = (slot, slotentry)
type substs = list subst
type comb = list substs

func sum acc comb = acc ++ comb

func product acc comb =
if (acc == []) return comb
return flatten (map (fun x -> map (fun y -> x ++ y) acc) comb)

func make_comb tree trie =
match (tree, trie) with
| (LeafT (Some e), LeafP (Some s)) -> [[(s, e)]]
| (NodeT cs, NodeP ds) -> (fold (fun dk dv acc ->

if dk == "*" then
let comb = fold (fun ck cv acc' ->

let comb' = make_comb cv dv
return sum acc' comb') cs []

return product acc comb
else

let cv = find dk cs
let comb = make_comb cv dv
return product acc comb) ds [])

| (LeafT _, NodeP _) -> error "too long slot"
| (NodeT _, LeafP _) -> error "too short slot"

Figure 3.66: Template expansion algorithm in OCaml-based pseudocode

This algorithm takes as input a data tree slottree of template meta-variables and a
prefix tree slottrie of all the slots in a template definition. The navigation then proceeds
recursively from the root nodes of both trees, as summarised below:

1. If the current node of the prefix tree has a single child, it visits the corresponding
child in the data tree, performing a regular tree navigation by path.

2. If the current node of the prefix tree has multiple children, it visits all the children
in the data tree in a DFS order and combines the resulting combinations by taking
a Cartesian product.

3. If the current node of the prefix tree has a wildcard * as a child, it visits all the
children in the data tree in DFS order and combines the resulting combinations by
taking a sum.

4. Finally, if the current node of the prefix tree is a leaf node and the data tree is
also a leaf node, it returns a single combination consisting of the matching slot.
Otherwise, either the prefix tree or the data tree must be ill-formed.

Note that we take a product of combinations in case 2 because this corresponds to a
situation where multiple slots diverge. Conversely, we take a sum of combinations when
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encountering a wildcard * in case 3, since the wildcard * signifies the position where
enumeration of template meta-variables must occur, generating multiple combinations as
a result.

This algorithm can be seen as a hybrid of path-based tree navigation and DFS-like tree
traversal. If the prefix tree is linear and does not contain any wildcards *, such as re ⌋

lations.Step_pure.rules.call_addr.before, it behaves like a regular tree navigation
following the path to a leaf node. If the prefix tree is linear but only consists of wild-
cards *, for instance *.*.*.*.*, it behaves as a typical DFS tree traversal, visiting all
children.

Slot Substitution Pass

Finally, we proceed to substitute the template meta-variables into the holes of template
definitions. This is implemented by recursively traversing a template definition and re-
placing template constructs with the corresponding slotentry available in the current
combination. This process is performed for each combination, each producing an instance
of the template definition.

Recall that during the environment pass, we collected not only the expressions to be
substituted but also the binds of the free variables within those expressions. These binds
are now propagated in a bottom-up manner and subsequently captured as the binds of the
quantifiers and top-level definitions. The quantifiers capture only those binds relevant to
their quantified variables, whereas the top-level definitions capture any remaining binds
propagated bottom-up.

Repositioning Pass

As part of the slot substitution pass, we also invoke a sub-pass called the repositioning
pass, which is responsible for overwriting the positional information embedded in the
substituted IL expressions. This helps prevent misleading error messages pointing to the
position of the substituted expressions rather than the template constructs in the DSL, if
any errors are detected after template expansion.

Simplification Pass

There are several issues to be resolved, although the template expansion is technically
complete at this point. This is best illustrated by the result of template expansion in
Figure 3.67, where irrelevant parts have been replaced by ellipsis ....

The first issue concerns the subsumption bottom <: bool inserted at the position of
the template constructs. This happens because the template constructs are temporarily
assigned the bottom type to facilitate validation prior to template expansion. The elab-
oration process applies subsumption from the actual type bottom to the expected type
bool wherever a cast is applied as part of the bidirectional typing — in this case, under
the implication operator =>.

Another issue is that the substituted premises remains as a conjunction like $type(z, x)
= $funcinst(z)[a].TYPE_funcinst /\ $table(z, 0).REFS_tableinst[i] = ?(a) / ⌋

\ .... Ideally, such conjunctions should be linearised into nested implications, such
as $type(z, x) = $funcinst(z)[a].TYPE_funcinst => $table(z, 0).REFS_tablei ⌋

nst[i] = ?(a) => ..., to facilitate integration with theorem provers.

To address these issues, we introduce a post-processing pass responsible for performing
various simplifications. It currently performs the following tasks, although the list is not
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exhaustive and may be extended in the future. Some of these simplifications must be
performed prior to others, such as the removal of subsumption.

• Removal of subsumption from bottom type
• Linearisation of conjunction of premises in implications
• Removal of empty universal and existential quantifiers
• Removal of empty premises in implications

Figure 3.68 illustrates the result of this simplification pass. This demonstrates that the
simplifications are applied correctly, producing cleaner code optimised for downstream
translation.

lemma Step_read__preserves__call_indirect-call :
forall (...) ... =>
(@(Admin_instrs_ok: `%;%|-%:%`(s, C',

[CONST_admininstr(INN_valtype(I32_inn), i)
CALL_INDIRECT_admininstr(x)], ft)) => ... =>

↪→

↪→

(((($type(z, x) = $funcinst(z)[a].TYPE_funcinst) /\ (($table(z,
0).REFS_tableinst[i] = ?(a)) /\ ((a < |$funcinst(z)|) /\ (i <
|$table(z, 0).REFS_tableinst|)))) : bottom <: bool) => ... =>

↪→

↪→

@(Admin_instrs_ok: `%;%|-%:%`(s, C', [CALL_ADDR_admininstr(a)], ft))))

Figure 3.67: Results of Coq translation before simplification pass

lemma Step_read__preserves__call_indirect-call :
forall (...) ... =>
(@(Admin_instrs_ok: `%;%|-%:%`(s, C',

[CONST_admininstr(INN_valtype(I32_inn), i)
CALL_INDIRECT_admininstr(x)], ft)) => ... =>

↪→

↪→

(($type(z, x) = $funcinst(z)[a].TYPE_funcinst) =>
(($table(z, 0).REFS_tableinst[i] = ?(a)) =>
((a < |$funcinst(z)|) =>
((i < |$table(z, 0).REFS_tableinst|) => ... =>
@(Admin_instrs_ok: `%;%|-%:%`(s, C', [CALL_ADDR_admininstr(a)], ft)))))))

Figure 3.68: Results of Coq translation after simplification pass

3.4.5 Coq Translation

Since template expansion is fully handled within the template middlend, the IL passed
to downstream translation is free of template constructs. Consequently, the Coq backend
functions as expected without requiring any modifications.

Figure 3.69 gives an example of the final translation to Coq. Note that the generated code
may contain a mixture of Coq and SSReflect syntaxes.

Lemma Step_pure__preserves__br_if_true : forall (v_l : labelidx) (v_c : iN)
(v_ft : functype) (v_C : context) (v_s : store), ((Admin_instrs_ok v_s
v_C [(admininstr__CONST (valtype__INN (inn__I32 )) (v_c :
val_));(admininstr__BR_IF v_l)] v_ft) -> ((Step_pure [(admininstr__CONST
(valtype__INN (inn__I32 )) (v_c : val_));(admininstr__BR_IF v_l)]
[(admininstr__BR v_l)]) -> (((v_c : val_) <> 0) -> (Admin_instrs_ok v_s
v_C [(admininstr__BR v_l)] v_ft)))).

↪→

↪→

↪→

↪→

↪→

↪→

Proof. Admitted.

Figure 3.69: Results of Coq translation of template constructs
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Chapter 4

Evaluation

4.1 Progress Proof
The key outcome of this section is the completion of the progress proof. We made the
necessary modifications to the DSL, acknowledged the divergence of the DSL from the
Wasm 1.0 specification [Wor19] and developed the progress proof in a SSReflect-native
style [Inr18b].

Apart from the changes made in Admin_instr_ok and Memory_instance_ok, all modi-
fications to the DSL concerned the parts authored by Andreas himself. These inconsis-
tencies were not identified by the preservation proof nor by the implementations of the
individual backends, highlighting the significance of completing the progress proof in this
project.

Several lemmas were reformulated from scratch to accommodate changes in the DSL trans-
lation, particularly those resulting from the elimination of block and evaluation contexts.
This demonstrates originality in the development of the proof structure, going beyond a
direct porting process of WasmCert-Coq [WRPP+21].

The consistent use of SSReflect tactics in the progress proof also offers a major benefit in
terms of readability and maintainability. Compared to standard Coq proofs. SSReflect
enforces an explicit style in proof mode, requiring us to name every newly introduced
variable and to specify the exact occurrence in rewrites, for example [Inr18b]. These
requirements help make the proofs more robust to future changes.

This proof style is in contrast to that of WasmCert-Coq by Rao [BGP+25] and the preser-
vation proof by Diego [Cup25]. WasmCert-Coq likely began with pure Coq proofs and
gradually incorporated SSReflect constructs as the codebase evolved, resulting in a mix-
ture of both styles [BGP+25]. This project was therefore a valuable opportunity not only
to migrate the proofs but also to resolve these stylistic inconsistencies.

There are, however, several outstanding tasks that still need to be addressed. A notable
issue is the introduction of the val_wf axiom – the proofs should be rewritten without
this axiom once the monomorphisation feature is implemented. Another pending task is
to update the preservation proof to accommodate the modifications made to the DSL.
This should be addressed in the near future, ideally as part of a broader refactoring effort
to update both IL2Coq and the preservation proof itself [Cup24] to a SSReflect-native
style.

In terms of future work, the next milestone would be to upgrade the proofs of the sound-
ness theorems from the Wasm 1.0 [Wor19] to Wasm 2.0 [Wor22a] specification. This task
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remains relatively high priority because other backends already support the Wasm 2.0
specification [YSL+25], and the adoption of SpecTec into the official WebAssembly reposi-
tory is likely imminent. However, we did not attempt it within this project, as our primary
focus was on extending the SpecTec DSL.

4.2 Decidable Equality Proofs
The key outcome of this section is the full automation of EqType instance generation.
We have successfully extended Il2Coq’s existing mechanisms [Cup24] to automatically
generate EqType instances for non-recursive data types, and improved WasmCert-Coq’s
approach [BGP+25] for (mutually) recursive data types by using the Fixpoint technique,
alongside a custom hint database to isolate proofs involving decidable equality of individual
data types.

The primary benefits of these EqType instance generations are discussed in detail in the in-
troduction of Chapter 3.2. Compared to WasmCert-Coq’s original approach, our method
considerably simplifies the decidable equality proofs, reducing their length from approxi-
mately 100 lines to 15 lines per definition [BGP+25].

An interesting extension to this section of the project would be to upgrade the MathComp
version to 2.0 or later, which uses hierarchy builders (HB) [Mat25] instead of canonical
structures for defining EqType instances.

Figure 4.1 demonstrates the use of HB for EqType instances, which is inspired by a recent
change made by Rao in WasmCert-Coq [BGP+25]. As we can observe, HB offers high-level
commands, such as the factory hasDecEq.Build in this case [Mat25], which help reduce
boilerplate code compared to Canonical Structures.

From HB Require Import structures.
Definition func_eqb v1 v2 := is_left (func_eq_dec v1 v2).
Definition eqfuncP : Equality.axiom func_eqb :=

eq_dec_Equality_axiom func_eq_dec.
HB.instance Definition func_eqMixin := hasDecEq.Build func eqfuncP.

Figure 4.1: EqType instance using hierarchy builder (HB) inspired by WasmCert-
Coq [BGP+25]

Additionally, it is important to recognise that generating decidable equality proofs is
not possible for every data type. For instance, equality between two real numbers is
generally undecidable, and thus representing floating-point numbers in the specification
as real numbers would prevent them from being valid instances of EqType. Instead, such
floating-point values must either be modelled using specialised libraries such as the Flocq
library [inr25b], or represented explicitly in the DSL as a syntax type.

4.3 First-Order Logic Extension
The key outcomes of this section include a discussion of the design of first-order logic
constructs and the introduction of the necessary extensions to the DSL, EL, IL and MIL.
We successfully integrated the frontend, middlend and backends to perform the required
translation and validation, producing theorem statements in Coq, LATEX and prose for-
mats.

The primary benefits of the first-order logic extension, along with the justifications for
the design choices, are presented in the introduction of Chapter 3.3. This section focuses
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on the remaining aspects of this extension, including potential issues, side effects and
directions for future work.

Figure 4.2 presents the manually written theorem statements that correspond to the auto-
translated Coq code shown in Figure 3.43. A visual comparison between the two confirms
that they are indeed equivalent, thereby justifying the correctness of the translation.

As an additional step, we have successfully migrated the proofs of a few theorems to the
auto-translated counterparts. This was achieved with minimal modifications, as the trans-
lated statements are nearly identical to the original statements. This not only provides
an objective confirmation of correctness but also suggests that migrating the proofs of the
remaining theorems should be a straightforward process.

Definition not_lf_br es :=
forall vcs l es',
es <> list__val__admininstr vcs ++ [:: admininstr__BR l] ++ es'.

Theorem t_progress: forall s f es ts,
Config_ok (config__ (state__ s f) es) ts ->
terminal_form es \/
exists s' f' es', Step (config__ (state__ s f) es) (config__ (state__ s'

f') es').↪→

Proof. ... Qed.

Figure 4.2: Manually written statement of progress property in Coq

Additionally, Figure 4.3 presents the manually written statement corresponding to the
auto-translated LATEX formula and prose description shown in Figures 3.47 and 3.44. The
manual counterpart of the LATEX formula is unavailable, as theorems are specified only
in prose format within the specification. Once again, a visual comparison confirms that
the manually written and auto-translated versions are logically equivalent, although the
manual statement has a more natural style.

**Theorem (Progress).**
If a :ref:`configuration <syntax-config>` :math:`S;T` is :ref:`valid

<valid-config>` (i.e., :math:`\vdashconfig S;T : [t^\ast]` for some
:ref:`result type <syntax-resulttype>` :math:`[t^\ast]`), then either it
is terminal, or it can step to some configuration :math:`S';T'` (i.e.,
:math:`S;T \stepto S';T'`).

↪→

↪→

↪→

↪→

Theorem (Progress). If a configuration S;T is valid (i.e., ⊢ S;T : [t∗] for some
result type [t∗]), then either it is terminal, or it can step to some configuration S′;T ′

(i.e., S;T ↪→ S′;T ′).

Figure 4.3: Manually written statement of progress property in LATEX and prose [Wor19]

These first-order logic constructs form a superset of the premises in the DSL in terms of
expressiveness. In particular, rule expressions replace rule invocations in premises, while
iterated formulas substitute iterated premises. As a result, the syntax of premises can be
simplified to include only var, if and otherwise, as illustrated in Figure 4.4.
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premise ::=
"var" id ":" typ local variable declaration
"if" exp side condition
"otherwise" fallback side condition

rule Step/ctxt-label:
z; (LABEL_ n `{instr*} admininstr*) ~> z'; (LABEL_ n `{instr*} admininstr'*)
-- if @(Step: z; admininstr* ~> z'; admininstr'*)

Figure 4.4: Potential simplification of premise syntax in DSL

In fact, these first-order logic constructs are more expressive than premises due to the
inclusion of universal and existential quantifiers. For example, consider range types in the
DSL, which are internally represented as type aliases of nat or int, with their bounds
specified by inequalities in the premises [Spe25b]. By leveraging first-order quantifiers, it
becomes possible to define more complex data types, such as the type of even integers or
prime numbers, as shown in Figure 4.5.

The interpretation of these premises is not handled by the frontend or middlend, but is
delegated to the individual backends [Spe25b]. Consequently, the introduction of such
complex premises does not affect the semantics of the DSL itself, although it may increase
the complexity of backend implementations.

syntax int32 = int
-- if int >= $(-2^31) /\ int < $(+2^31)

syntax even = int
-- if exists (n) int = $(n * 2)

syntax prime = nat
-- if nat >= 1
-- if forall (y, z) nat = $(y * z) => y = 1 \/ z = 1

Figure 4.5: Potential applications of first-order logic constructs in premises in DSL

Another notable consequence of lifting premises to expressions is that the otherwis ⌋

e premise can now be represented simply by negating the conjunction of all preceding
premises at the IL level. Previously, we had to define new relations for each negation,
since the DSL lacks syntax to directly negate premises. This also implies that the else pass
in IL2Coq [Cup24] is no longer necessary, thereby simplifying its implementation.

Moreover, these first-order logic constructs could be useful for explicitly annotating the
quantification of determinate variables in the DSL. Determinate variables are a sub-
set of free variables used by the elaboration process to generate binds, defined as fol-
lows [YSL+25]:

• Free variables occuring as an iteration variable
• Free variables occuring in destructuring position on the LHS
• Free variables occuring in destructuring position on either side of an equational

premise
• Free variables occuring in destructuring position as an indexing operand
• Free variables occuring in destructuring position as the last call arg

Determinate variables are typically universally quantified, such as C, deftype_1 and de ⌋

ftype_2 in the rule Deftype_sub/super from the Wasm 3.0 draft specification [Wor22b],
as given in Figure 4.6. However, determinate variables may also be existentially quantified
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in some cases, such as fin, typeuse, ct and i in Figure 4.6. With the first-order logic
constructs, we can clarify these implicit semantics by quantifying these variables explicitly,
as demonstrated in Figure 4.7.

rule Deftype_sub/super:
C |- deftype_1 <: deftype_2
-- if $unrolldt(deftype_1) = SUB fin typeuse* ct
-- Heaptype_sub: C |- typeuse*[i] <: deftype_2

Figure 4.6: Example of determinate variables without explicit quantification [YSL+25]

rule Deftype_sub/super:
C |- deftype_1 <: deftype_2
-- if exists (fin, typeuse*, ct) $unrolldt(deftype_1) = SUB fin typeuse* ct
-- if exists (i) @(Heaptype_sub: C |- typeuse*[i] <: deftype_2)

Figure 4.7: Example of determinate variables with explicit quantification

However, a notable limitation of the current implementation is that we can only quantify
variables of non-family types. This prevents us from quantifying over variables of type
val_(t), for instance, although such quantification was not required for our use cases.
Ideally, it would be desirable to introduce a type-annotation syntax such as forall (t,
c : val_(t)) ..., but this is complicated by the need for disambiguation again, since
the colon : is an atom that can form part of any custom notations.

Another practical challenge is that any change in the DSL requires recompilation. This
poses a significant issue for iterative proof development, because it overwrites any proofs
manually added to the placeholder Proof. Admitted. within the auto-translated theorem
definitions.

It is possible to circumvent this limitation by outputting theorem statements to a tem-
porary file, allowing them to be copied into a separate file containing the manual proofs.
However, this process is rather cumbersome, particularly during the initial stages of proof
development. Alternatively, we could define theorem statements as zero-ary predicates in
the DSL, and state the theorems like Theorem t_progress : t_progress_statement.
in Coq. While this approach eliminates the need for copy-pasting, it lacks readability as
the actual statements must be referenced in a separate file.

In general, there is no straightforward solution that can address all of these issues. As a
consequence, we may need to resort to one of these suboptimal solutions when incorpo-
rating this mechanism for proof development in the future.

Another drawback of the first-order logic constructs is the frequent use of the @ symbol for
disambiguation. However, we emphasise that the purpose of the @ symbol is primarily to
serve as a clear visual reminder that the grammar of the DSL will likely require revision
to address these issues, should this mechanism be adopted in the future.

The revised syntax will likely require reserving certain symbols, such as the colon :,
rather than allowing them to be part of custom notations. These decisions are deferred in
this project, as they are inherently subjective and will depend heavily on feedback from
specification writers.

Regarding code quality, considerable effort was made to ensure that the new code is
clear, concise and consistent with the style of the existing codebase. Slight variations in
OCaml coding styles exist across the SpecTec toolchain, particularly among the frontend,
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middlend, interpreter backend and Coq backend [YSL+25]. To minimise disruption, the
new code was adapted to align with the style of the surrounding code within each respective
component. Addressing these inconsistencies may necessitate a comprehensive refactoring
of the SpecTec toolchain in the future.

Finally, an important direction for future work is to extend these first-order logic con-
structs to other theorem provers such as Lean and Isabelle/HOL, should they be adopted.
These constructs will become increasingly significant once this extension is made, as one
of their primary motivations is to maintain uniformity and consistency across theorem
provers.

4.4 Template Mechanism

The key outcomes of this section include a discussion of the design of the template con-
structs and the introduction of the necessary extensions to the DSL, EL and IL. We
successfully integrated the corresponding frontend and middlend to perform the transla-
tion, validation and template expansion, producing the statements of dozens of auxiliary
lemmas from a single template definition.

The primary advantages of this template mechanism, as well as the justifications for the
design decisions, are discussed in the introduction of Chapter 3.4. This section will address
the remaining aspects of the template mechanism.

Figure 4.8 presents the manually written statement of the auxiliary lemma corresponding
to the auto-translated Coq code shown in Figure 3.43. A visual comparison between the
two confirms that they are indeed equivalent, except that the manually written state-
ment omits the premise ((v_c : val_) <> 0), as preservation still holds without this
condition. Furthermore, we have successfully migrated proofs of a few theorems to their
auto-translated counterparts, confirming the correctness of the translation.

Lemma Step_pure__br_if_true_preserves :
forall v_S v_C (v_c : iN) (v_l : labelidx) v_func_type,
Admin_instrs_ok v_S v_C [(admininstr__CONST (valtype__INN (inn__I32 )) (v_c

: val_));(admininstr__BR_IF v_l)] v_func_type ->↪→

^^IStep_pure [(admininstr__CONST (valtype__INN (inn__I32 )) (v_c :
val_));(admininstr__BR_IF v_l)] [(admininstr__BR v_l)] ->↪→

^^IAdmin_instrs_ok v_S v_C [(admininstr__BR v_l)] v_func_type.
Proof. ... Qed.

Figure 4.8: Manually written auxiliary lemma statements in preservation proof [Cup24]

A potential drawback of this template mechanism is code bloat, characterised by a sig-
nificant increase in the size of the IL code following template expansion. This poses a
problem because the SpecTec compiler is not optimised for performance. For instance,
the elaboration and validation processes take approximately 0.25 seconds for Wasm 1.0,
1.5 seconds for Wasm 2.0 and 2.75 seconds for Wasm 3.0 specifications on a consumer
laptop, which is not particularly fast.

Simple template definitions producing an O(N) number of instances are unlikely to cause
issues. However, template definitions involving nested slots or Cartesian products of slots,
resulting in O(N2) instances or more, could significantly slow down compilation. This will
not be a problem for auxiliary lemmas in most cases, however, as proofs involving O(N2)
cases are likely to be poorly structured and would require reformulation.
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Another subtle issue concerns potential conflicts among free variables introduced in the
substituted expressions, although this has not been an issue in our current use cases. Such
conflicts may arise either with the surrounding context within the template definition
or between expressions substituted into different holes of the template. The latter is
particularly likely in cases involving a Cartesian product of slots.

As a temporary solution, we implemented a mechanism that renames these free variables
to unique identifiers prior to substitution. While this approach partially addresses the
problem, the issue of determining the appropriate scopes beyond which conflicts must
be resolved remains unresolved – for instance, conflicts between relations.Step_pure ⌋

.rules.*.before and relations.Step_read.rules.*.before should be resolved, but
not between relations.Step_pure.rules.*.before and relations.Step_pure.rul ⌋

es.*.after, since the latter should share the same free variables. Consequently, this
implementation has been abandoned and remains a task for future work.

Additionally, a similar concern arises regarding limitations on iterative proof development,
which requires suboptimal workarounds as previously discussed. This is particularly rel-
evant in the context of the template mechanism, as the auto-generated auxiliary lemmas
often reflect the internal structure of proofs, which are subject to frequent updates.

Furthermore, it is worth noting that, unlike key theorems such as progress and preserva-
tion, these auxiliary lemmas are intended to be specified by verification engineers rather
than specification writers. This imposes a steep learning curve on verification engineers,
as they are required to learn the SpecTec DSL for proof development.

Regarding code quality, significant attention was paid to ensuring consistency with the
existing codebase, as discussed in the previous section. The template middlend is relatively
isolated from the rest of the code, which offered us greater flexibility in terms of coding
style. We chose to adopt the style of the frontend code, primarily authored by Andreas, as
this part of the SpecTec toolchain generally has the cleanest and most consistent coding
style [YSL+25].

Futhermore, future work could explore restructuring the progress proof by extracting
each inductive step into a standalone lemma, adopting a structure similar to that of the
preservation proof. We did not take this approach for the progress proof, as manually
writing such auxiliary lemmas would be laborious. However, this manual effort is no
longer a concern with the introduction of the template mechanism.

Finally, an ambitious direction for future work could be to design a sophisticated mecha-
nism capable of auto-generating not only the statements but also the proofs of auxiliary
lemmas. Unlike automated theorem provers, this mechanism could use proof templates
to guide proof search, drawing inspiration from logical frameworks [Gar92]. This work
would be highly ambitious but can be seen as the ultimate goal for the theorem prover
backend, as proof automation will inevitably become necessary at some point due to the
rapid evolution of Wasm.
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Chapter 5

Conclusion

In this project, we successfully completed the mechanised proof of the progress property in
the Wasm 1.0 specification [Wor19], building upon Diego’s prior work on IL2Coq and the
preservation proof [Cup24]. We went beyond simply porting the proofs from WasmCert-
Coq [WRPP+21] and introduced improvements in proof style and structure to enhance
maintainability. This process led to the identification of key inconsistencies in the SpecTec
DSL authored by Andreas [YSL+24], all of which were subsequently resolved.

The development of the progress proof highlighted the limitations of IL2Coq and the
broader SpecTec toolchain. This motivated us to implement improvements in SpecTec
itself, including the auto-generation of decidable equality proofs, the extension with the
first-order logic constructs and the introduction of the template mechanism — which we
collectively refer to as “Lemmagen”, the title of this project.

Some of these improvements, namely the first-order logic constructs and the template
mechanism, serve as proofs of concept, with their adoption left to the WebAssembly com-
munity. These extensions will nevertheless remain a significant contribution, as the diffi-
culties and limitations that motivated their development persist and must be addressed
in the future. Therefore, the focus of these extensions is not only on their implementation
but also on documenting the design choices for future reference.

In conclusion, the contributions made in this project represent another milestone in the
ongoing evolution of the SpecTec toolchain and the WebAssembly language, building upon
WasmCert, IL2Coq and related efforts. We hope this work will offer meaningful value to
future contributors who continue the development of the WebAssembly language.
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Errata

The following notable corrections have been made to this report since its submission, in
chronological order:

Location Error Correction
p.32-33 Inappropriate use of repeat tactical

in Figures 3.27 and 3.28
Replaced with do ? tactical to
match SSReflect-native style

p.30, par 5, line 2 Inaccurate description of the proof
in Figure 3.25

Clarified that the proof proceeds by
establishing the Config_sound co-
recursively

p.65, par 3, line 2 Unclear discussion of the limitation
imposed on iterative proof develop-
ment

Clarified that this limitation is par-
ticularly relevant due to frequent
updates

p.21, par.3 Missing description of the modifica-
tions to the Step/ctxt-frame rule

Clarified that this rule has been
modified to allow changes in the
frame state f
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In this regard, we believe that we have provided thorough discussions justifying the design
choices made in each section. Nevertheless, we must take responsibility for any outstanding
tasks before the end of this project and ensure that any future directions are clearly
communicated to the SpecTec contributors and the wider WebAssembly community.

Use of Generative AI
We acknowledge the use of ChatGPT-4o (OpenAI) to detect grammatical errors as part of
the final review. We confirm that no AI-generated content has been presented as original
work.
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as a fork of the Wasm SpecTec repository.
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Appendix A

WebAssembly

The following presents a subset of the structure, typing rules and reduction rules of the
WebAssembly language, as specified in the Wasm 2.0 specification [Wor22a], which are
referenced in this report:

A.1 Structure

uN ::= 0 | 1 | · · · | 2N − 1 (value)
sN ::= −2N − 1 | · · · | −1 | 0 | 1 | · · · | 2N−1 − 1

iN ::= uN

fN ::= · · ·

numtype ::= i32 | i64 | f32 | f64 (type)
vectype ::= v128

reftype ::= funcref | externref
valtype ::= numtype | vectype | reftype

resulttype ::= [vec(valtype)]

functype ::= resulttype → resulttype

blocktype ::= typeidx | valtype

limits ::= {min u32 ,max u32 ?}
memtype ::= limits

tabletype ::= limits reftype

globaltype ::= mut valtype

mut ::= const | var
externtype ::= func functype

| table tabletype

| mem mathtype

| global globaltype

nn,mm ::= 32 | 64 (instr)
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sx ::= u | s
iunop ::= clz | ctz | · · ·
ibinop ::= add | sub | mul |

instr ::= inn.const unn | fnn.const fnn
| inn.iunop | fnn.funop
| inn.ibinop | inn.ibinop
· · ·
| ref.null reftype | · · ·
| drop | select (valtype∗)?

| local.get localidx | local.set localidx
| global.get globalidx | global.set globalidx
· · ·
| nop | unreachable
| block blocktype instr∗ end

| loop blocktype instr∗ end

| if blocktype instr∗ else instr∗ end

| br labelidx | · · · | return
| call funcidx | call_indirect tableidx typeidx

· · ·

instr ::= · · · (admininstr)
| trap | ref funcaddr | ref.extern externaddr

| invoke funcaddr

| labeln{instr∗} instr∗ end

| framen{framestate} instr∗ end

expr ::= instr∗ end (exp)

module ::= { (module)
types vec(functype),

funcs vec(func),

tables vec(table),

mems vec(mem),

globals vec(global),

elems vec(elem),

datas vec(data),

start start?,

imports vec(import),

exports vec(export) }

func ::= { type typeidx , locals vec(valtype), body expr } (func)
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global ::= { type memtype, init expr } (global)

table ::= { type tabletype } (table)

mem ::= { type memtype } (mem)

context ::= { (context)
types functype∗,

funcs functype∗,

tables tabletype∗,

mems memtype∗,

globals globaltype∗,

elems reftype∗,

datas ok∗,

locals valtype∗,

labels resulttype∗,

return resultytpe?,

refs funcidx ∗ }

store ::= { (store)
funcs funcinst∗,

tables tableinst∗,

mems meminst∗,

globals globalinst∗,

elems eleminst∗,

datas datainst∗ }

funcinst ::= { type functype, module moduleinst , code func } (inst)
| { type functype, hostfunc hostfunc }

hostfunc ::= · · ·
tableinst ::= { type tabletype, elem vec(ref ) }
meminst ::= { type memtype, data vec(byte) }
globalinst ::= { type globaltype, value val }
eleminst ::= { type reftype, elem vec(ref ) }
datainst ::= { data vec(byte) }

exportinst ::= { name name, value externval }

framestate ::= { localsval∗, modulemoduleinst∗ } (framestate)

moduleinst ::= { (moduleinst)
typefunctype∗,
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funcaddrsfuncaddr∗,

tableaddrstableaddr∗,

memaddrsmemaddr∗,

globaladdrsglobaladdr∗,

elemaddrselemaddr∗,

dataaddrsdataaddr∗,

exportsexportinst∗ }

B0 ::= val∗ [_] instr∗ (blockcontext)
Bk+1 ::= val∗ labeln{instr∗} Bk end instr∗

E ::= [_] | val∗ E instr∗ | labeln{instr∗} E end (evalcontext)

A.2 Validation

C ⊢ t.const c : [] → [t]
(T-const)

C ⊢ t.unop : [t] → [t] C ⊢ t.binop : [t t] → [t]
(T-numeric)

C ⊢ drop : [t] → [] C ⊢ select : [t t i32] → [t]
(T-parametric)

C.locals[x] = t

C ⊢ local.get : [] → [t]

C.locals[x] = t

C ⊢ local.set : [t] → []
(T-variable)

C.globals[x] = mut t

C ⊢ global.get : [] → [t]

C.globals[x] = var t

C ⊢ global.set : [t] → []

C ⊢ nop : [] → [] C ⊢ unreachable : [t∗1] → [t∗2]
(T-control)

C ⊢ blocktype : [t∗1] → [t∗2] C, labels [t∗2] ⊢ instr∗ : [t∗1] → [t∗2]

C ⊢ block blocktype instr∗ end : [t∗1] → [t∗2]

C ⊢ blocktype : [t∗1] → [t∗2] C, labels [t∗2] ⊢ instr∗ : [t∗1] → [t∗2]

C ⊢ loop blocktype instr∗ end : [t∗1] → [t∗2]

C.labels[l] = [t∗]

C ⊢ br l : [t∗1 t∗] → [t∗2]

C.return = [t∗]

C ⊢ return : [t∗1 t∗] → [t∗2]

⊢ limits : 232 − 1

⊢ limits refltype ok

⊢ limits : 216

⊢ limits refltype ok
(T-type)
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n ≤ k (m ≤ k)? (n ≤ m)?

⊢ {min n,max m?} : k

A.3 Execution

(t.const c1) t.unop ↪→ (t.const c) (R-numeric)
(if c ∈ unopt(c1))

(t.const c1) t.unop ↪→ trap

(if unopt(c1) = ∅)
(t.const c1) (t.const c2) t.binop ↪→ (t.const c)

(if c ∈ binopt(c1, c2))

(t.const c1) (t.const c2) t.binop ↪→ trap

(if binopt(c1, c2) = ∅)
(t.const c1) t.testop ↪→ (t.const c)

(if c ∈ testopt(c1))

(t.const c1) (t.const c2) t.relop ↪→ (t.const c)

(if c ∈ relopt(c1, c2))

val drop ↪→ ε (R-parametric)
val1 val2 (i32.const c) (select t?) ↪→ val1

(if c ̸= 0)

val1 val2 (i32.const c) (select t?) ↪→ val2

(if c = 0)

F ; (local.get x) ↪→ F ; val (R-variable)
(if F.locals[x] = val)

F ; (local.set x) ↪→ F ′; val

(if F ′ = F with locals[x] = val)

S;F ; (global.get x) ↪→ S;F ; val

(if S.globals[F.module.globaladdrs[x]].value = val)

S;F ; (global.set x) ↪→ S′;F ; val

(if S′ = S with globals[F.module.globaladdrs[x]].value = val)

nop ↪→ ε (R-control)
unreachable ↪→ trap

F ; valm block bt instr∗ end ↪→ F ; labeln{ε} valm instr∗ end

(if expandF (bt) = [tm1 ] → [tn2 ])

F ; valm loop bt instr∗ end ↪→ F ; labeln{loop bt instr∗ end} valm instr∗ end

(if expandF (bt) = [tm1 ] → [tn2 ])
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expandF (typeidx ) = F.module.types[typeidx ]

expandF ([valtype
?]) = [] → [valtype?]

labeln{instr∗} valn end ↪→ val∗ (R-block)
labeln{instr∗} Bl[valn (br l)] end ↪→ valn instr∗

S;F ;E[instr∗] ↪→ S′;F ′;E[instr ′∗] (R-eval)
(if S;F ; instr∗ ↪→ S′;F ′; instr ′∗)

S;F ; framen{F ′} instr∗ end ↪→ S′;F ; framen{F ′′} instr ′∗ end

(if S;F ′; instr∗ ↪→ S′;F ′′; instr ′∗)

S;F ;E[trap] ↪→ S;F ; trap

S;F ; framen{F ′} trap end ↪→ S;F ; trap
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Appendix B

SpecTec

The following provides the complete grammars of the SpecTec DSL and IL for refer-
ence. Details of their semantics can be found in their respective documentations [Spe25b,
Spe25a].

B.1 DSL Grammar
x*sep ::=

eps
x
x sep x*sep

digit ::= "0" | ... | "9"
hex ::= digit | "A" | ... | "F"

num ::= digit+ | "0x" hex+ | "U+" hex+ | "`" digit+
bool ::= "true" | "false"
text ::= """ utf8* """

upletter ::= "A" | ... | "Z"
loletter ::= "a" | ... | "z"

upid ::= (upletter | "`" loletter | "_") (upletter | digit | "_" | "." | "'")*
loid ::= (loletter | "`" upletter | "`_") (loletter | digit | "_" | "'")*
id ::= upid | loid

atomid ::= upid | "infinity" | "_|_" | "^|^"
varid ::= loid
gramid ::= id
defid ::= id
relid ::= id
ruleid ::= id
subid ::= ("/" | "-") ruleid

atomop ::=
"in" | ":" | ";" | "\" | <:"
"<<" | ">>"
"|-" | "-|"
":=" | "~~" | "~~_"
"->" | "~>" | "~>*" | "=>"
"`." | ".." | "..."
"`?" | "`+" | "`*"
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"(/\)" | "(\/)" | "(+)" | "(*)" | "(++)"
":_" | "=_" | "==_" | "->_" | "=>_" | "~>_" | "~>*_" | "|-_" | "-|_"

numtyp ::=
"nat" natural numbers
"int" integer numbers
"rat" rational numbers
"real" real numbers

typ ::=
varid args type name
"bool" booleans
"text" text strings
numtyp numbers
typ iter iteration
"(" typ*"," ")" parentheses or tupling

iter ::=
"?" optional
"*" list
"+" non-empty list
"^" arith list of specific length
"^" "(" id "<" arith ")" list of specific length with index

deftyp ::=
typ alias
contyp constructor
("..."? "|")? casetyp+"|" ("|" "...")? variant
rangetyp+"|" range / enumeration
"{" fieldtyp+"," ","? "}" record

contyp ::= nottyp hint* ("--" premise)*
casetyp ::= nottyp hint* ("--" premise)*
fieldtyp ::= atom typ hint* ("--" premise)*
rangetyp ::= exp | "..."

nottyp ::=
typ plain type
atomid atom
atomop nottyp infix atom
nottyp atomop nottyp infix atom
nottyp nottyp sequencing
"(" nottyp ")" parentheses
"`" "(" nottyp ")" custom brackets
"`" "[" nottyp "]"
"`" "{" nottyp "}"
nottyp iter iteration

notop ::= "~"
logop ::= "/\" | "\/" | "=>"
cmpop ::= "=" | "=/=" | "<" | ">" | "<=" | ">="
exp ::=

varid meta variable
bool Boolean literal
num natural number literal
text text literal
notop exp logical negation
exp logop exp logical connective
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exp cmpop exp comparison
"eps" empty sequence
exp exp sequencing
exp iter iteration
"[" exp* "]" list
exp "[" arith "]" list indexing
exp "[" arith ":" arith "]" list slicing
exp "[" path "=" exp "]" list update
exp "[" path "=++" exp "]" list extension
"{" (atom exp)*"," "}" record
exp "." atom record access
exp "," exp record extension
exp "++" exp list and record composition
exp "<-" exp list membership
"|" exp "|" list length
"||" gramid "||" expansion length
"(" exp*"," ")" parentheses or tupling
"$" defid exp? function invocation
atom custom token
atomop exp custom operator
exp atomop exp
"`" "(" exp ")" custom brackets
"`" "[" exp "]"
"`" "{" exp "}"
"$" "(" arith ")" escape to arithmetic syntax
"$" numtyp "$" "(" arith ")" numeric conversion
hole hole
exp "#" exp textual concatenation
"##" exp remove possible parentheses

unop ::= notop | "+" | "-"
binop ::= logop | "+" | "-" | "*" | "/" | "\" | "^"
arith ::=

varid meta variable
atom token
num natural number literal
unop arith unary operator
arith binop arith binary operator
arith cmpop arith comparison
exp "[" arith "]" list indexing
"(" arith ")" parentheses
"(" arith iter ")" iteration (must not be "^exp")
"|" exp "|" list length
"$" defid args function invocation
"$" "(" exp ")" escape back to general expression syntax
"$" numtyp "$" "(" arith ")" numeric conversion

path ::=
path? "[" arith "]" list element
path? "[" arith ":" arith "]" list slice
path? "." atom record element

hole ::=
"%" use next operand
"%"digit* use numbered operand
"%%" use all operands
"!%" empty expression
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"%latex" "(" text* ")" literal latex

sym ::=
gramid args
text
num
"$" "(" arith ")"
"eps"
"(" sym*"," ")"
sym iter
exp ":" sym
sym sym
sym "|" sym
sym "|" "..." "|" sym

prod ::=
sym "=>" exp ("--" premise)*

gram ::=
("..."? "|")? prod+"|" ("|" "...")?

args ::= ("(" arg*"," ")")?
arg ::=

exp
"syntax" typ
"grammar" sym
"def" defid

params ::= ("(" param*"," ")")?
param ::=

(varid ":") typ
"syntax" synid
"grammar" gramid ":" typ
"def" "$" defid params ":" typ

def ::=
"syntax" varid params hint* syntax declaration
"syntax" varid subid* params hint* "=" deftyp syntax definition
"grammar" gramid subid* params ":" typ hint* "=" gram grammar definition
"relation" relid hint* ":" nottyp relation declaration
"rule" relid subid* hint* ":" exp ("--" premise)* rule
"var" varid ":" typ hint* variable declaration
"def" "$" defid params ":" typ hint* function declaration
"def" "$" defid args "=" exp ("--" premise)* function clause
"syntax" varid subid* atom? hint+ outlined hints
"grammar" gramid subid* hint*
"relation" relid hint+
"rule" relid subid* hint+
"var" varid hint+
"def" "$" defid hint+

premise ::=
"var" id ":" typ local variable

declaration↪→

relid ":" exp relational premise
"if" exp side condition
"otherwise" fallback side

condition↪→
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"(" premise ")" iter* iterated relational
premise↪→

"--" separator

hint ::=
"hint" "(" hintid exp ")" hintargs ::= ("("

arg*"," ")")?↪→

script ::=
def*

B.2 IL Grammar
bool ::= "true" | "false"
text ::= """ char* """
id ::= text
mixop ::= text

sign ::= "+" | "-"
nat ::= digit+
int ::= sign nat
rat ::= sign? nat "/" nat
real ::= sign? nat "." nat
num ::= "nat" nat | "int" int | "rat" rat | "real" real

unop ::= "not" | "plus" | "minus" | "plusminus" | "minusplus"
binop ::= "and" | "or" | "impl" | "equiv" | "add" | "sub" | "mul" | "div" | "mod"

| "pow"↪→

cmpop ::= "eq" | "ne" | "lt" | "gt" | "le" | "ge"

iter ::=
"opt" ?
"list" *
"list1" +
"listn" exp id? ^n, ^(i<n)

booltyp ::= "bool"
numtyp ::= "nat" | "int" | "rat" | "real"
texttyp ::= "text"
optyp ::= booltyp | numtyp

typ ::=
"var" id t
booltyp bool
numtyp nat, int, ...
texttyp text
"tup" typbind* ( typ , ... , typ )
"iter" typ iter typ*, typ+, ...

deftyp ::=
"alias" typ typ
"struct" typfield* { field , ... , field }
"variant" typcase* case | ... | case

typbind ::= "bind" exp typ
typfield ::= "field" mixop bind* typ prem*
typcase ::= "case" mixop bind* typ prem*
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exp ::=
"var" id x
"bool" bool true, false
"num" num 0, -2
"text" text "text"
"un" unop optyp exp <op> exp
"bin" binop optyp exp exp exp <op> exp
"cmp" cmpop optyp exp exp exp <cmp> exp
"idx" exp exp exp[exp]
"slice" exp exp exp exp[exp : exp]
"upd" exp path exp exp[path = exp]
"ext" exp path exp exp[path =++ exp]
"struct" expfield* { atom exp, ... , atom exp }
"dot" exp mixop exp.atom
"comp" exp exp exp ++ exp (on records)
"mem" exp exp exp <- exp
"len" exp |exp|
"tup" exp* (exp, ..., exp)
"call" id arg* $x(arg, ..., arg)?
"iter" exp iter dom* exp?, exp*, ...
"case" mixop exp atom exp
"list" exp? exp ... exp or [exp ... exp]
"cat" exp exp exp ++ exp (on lists)

expfield ::= "field" mixop exp e

path ::=
"root" .
"idx" path exp path[exp]
"slice" path exp exp path[exp : exp]
"dot" path mixop path.atom

exp ::= ...
"proj" exp nat tuple projection exp.i
"uncase" exp mixop inverse of "case"
"opt" exp? option value (eps or singletong value)
"unopt" exp inverse of "opt"
"lift" exp conversion from t? to t*
"cvt" numtyp numtyp exp conversion from first to second numeric type
"sub" typ typ exp subsumption from first to second type

dom ::= "dom" id exp x <- exp

sym ::=
"var" id arg* x(arg, ..., arg)
"num" nat 0x12
"text" text "text"
"eps" eps
"seq" sym* sym ... sym
"alt" sym* sym | ... | sym
"range" sym sym sym | "..." | sym
"iter" sym iter dom sym?, sym+, ...
"attr" exp sym exp:sym

prem ::=
"rule" id mixop exp -- id: mixop-exp
"if" exp -- if exp
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"else" -- otherwise
"let" exp exp -- if exp = exp (when one side introduces

variables)↪→

"iter" prem iter dom -- prem*

def ::=
"typ" id param* inst* syntax x(param*) with instance definitions
"rel" id mixop typ rule* relation x: mixop-typ with rules
"def" id param* typ clause* def $x(param*) : typ with clauses
"gram" id param* typ prod* grammar x(param*) : typ with productions
"rec" def* inferred recursion group

inst ::= "inst" bind* arg* deftyp dt syntax _(arg*) = deftyp
rule ::= "rule" id bind* mixop exp prem* rule _/x mixop-exp -- prem*
clause ::= "clause" bind* arg* exp* prem* def $_(arg*) = exp -- prem*
prod ::= "prod" bind* sym exp prem* | sym => exp -- prem*

param ::=
"exp", id typ x : typ
"typ", id syntax x
"def", id param* typ def $x(param*) : typ
"gram", id typ grammar x : typ

arg ::=
"exp" exp exp
"typ" typ syntax typ
"def" id def $x
"gram" sym grammar sym

bind ::=
"exp" id typ
"typ" id
"def" id param* typ
"gram" id param* typ

script ::= def*
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