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Shall we mutex?



Disclaimer

I’m a baby Gopher and likely made more than a few errors…

Let me know if you notice any!!



Before we dive in

We need to cover some basics on Go’s threading model



Recap: G’s, M’s and P’s

● G for user threads
(goroutines)

● M for kernel threads 
(machine threads)

● P for resources required to 
execute G's on M's
(processors)

Golang Goroutine 與 GMP 原理全面分析  | Alan Zhan Blog

https://alanzhan.dev/post/2022-01-24-golang-goroutine/


Recap: G’s, M’s and P’s

P consists of:

● Scheduler state
○ Run queue
○ Preemption flags

● Memory allocator state
○ GC statistics
○ Heap memory space

(per P to avoid mutex)

P is distinguished from M
because M can get blocked on syscalls Golang Goroutine 與 GMP 原理全面分析  | Alan Zhan Blog

https://alanzhan.dev/post/2022-01-24-golang-goroutine/


Recap: G’s, M’s and P’s

Threading models:

● 1:1 (kernel-level threading)
○ Runs 1 application thread on 1 kernel thread
○ Adopted by GNU C

● M:1 (user-level threading)
○ Runs M application threads on 1 kernel thread
○ Adopted by GNU P

● M:N threading (hybrid threading)
○ Runs M application threads on N kernel threads
○ Adopted by Go Golang Goroutine 與 GMP 原理全面分析  | Alan Zhan Blog

https://alanzhan.dev/post/2022-01-24-golang-goroutine/


Recap: G’s, M’s and P’s

M:1 threading:

● Better performance due to 
no kernel involvement

M:N threading:

● Blocking system calls/page faults does 
not block all application threads

● Applications can implement their own 
scheduling algorithms

● Benefits from multi-core CPUs
Golang Goroutine 與 GMP 原理全面分析  | Alan Zhan Blog

https://alanzhan.dev/post/2022-01-24-golang-goroutine/


Version #1 - Initial Attempt

Semaphore of size 1 can be used 
to implement a mutual exclusion?

The semaphore used here is a bit special
(We’ll talk about this now)

This may seem cheating, but works!



The Runtime Semaphore

runtime_Semacquire

● Decrements its value if 
greater than zero

● Otherwise sleeps the current G and 
pushes it at the back of the wait 
queue

runtime_Semrelease

● Increments its value if the wait queue 
is empty

● Pops a waiting G at the front of the 
queue and wakes it up otherwise go/src/runtime/sema.go at master · golang/go 

(github.com)

https://github.com/golang/go/blob/master/src/runtime/sema.go
https://github.com/golang/go/blob/master/src/runtime/sema.go


The Runtime Semaphore

Queueing mechanism for goroutines
keyed by memory address (&m.sema)

Used as wake-up/sleep device
for other synchronisation primitives

Provided to sync package
via linkname to restrict access

go/src/runtime/sema.go at master · golang/go 
(github.com)

https://github.com/golang/go/blob/master/src/runtime/sema.go
https://github.com/golang/go/blob/master/src/runtime/sema.go


The Runtime Semaphore

User-space equivalent of “futexes”

Futexes are used to implement 
modern pthread_mutex_lock

Provides an interface to abstract 
blocking/unblocking operations to 
perform optimisations on top of it

go/src/runtime/sema.go at master · golang/go 
(github.com)

https://github.com/golang/go/blob/master/src/runtime/sema.go
https://github.com/golang/go/blob/master/src/runtime/sema.go


The Runtime Semaphore

runtime/sema in comparison to sync/semaphore:

● Acquire decrements the value
● The value is stored directly in addr
● The wait queue is keyed by addr

go/src/runtime/sema.go at master · golang/go 
(github.com)

https://github.com/golang/go/blob/master/src/runtime/sema.go
https://github.com/golang/go/blob/master/src/runtime/sema.go


The Runtime Semaphore

sync/semaphore in comparison to runtime/sema:

● Acquire increments the value (cur)
○ Acquiring more than its size blocks current G
○ Releasing more than its value results in a panic (unlike C/C++)

● Acquire/release can be weighted
● Handles context cancellation

sync/semaphore/semaphore.go at master · 
golang/sync (github.com)

https://github.com/golang/sync/blob/master/semaphore/semaphore.go
https://github.com/golang/sync/blob/master/semaphore/semaphore.go


The Runtime Semaphore

Q.

Why don’t we store the wait queue inside the Mutex struct, rather than managing 
the queues keyed by the address (&m.sema)?

A.

This approach requires exposing the runtime scheduling details to the sync 
package, which is not ideal

This will also increase the size of each mutex if statically allocated, or requires 
heap allocation otherwise. The queue also needs initialisation in such case 
(rather than its zero value), probably via make()



Version #2 - Atomics to the Rescue

We want to avoid the call to 
runtime_Semacquire() when 
unnecessary

Provide a fast path to Lock()
when there is no contention at all



Version #2 - Atomics to the Rescue

Use atomic.SwapInt32() to atomically 
read and update the state

Avoids calling runtime_Semacquire()
immediately on entry to Lock(), which 
can be expensive



Version #2 - Atomics to the Rescue

Set the mutex locked and exit the loop if 
the mutex was previously unlocked

Otherwise acquire the semaphore and 
sleep

On wake-up, perform the check again, 
because a new G might have “barged in” 
and acquired the lock before the waiting 
G’s



Version #2 - Atomics to the Rescue

Now that we don’t always acquire the 
semaphore and decrement its value, 
releasing the semaphore in Unlock() 
unconditionally will increment its value too 
many times!

So let’s leave Unlock() as a TODO for now, 
and for now focus on optimising Lock()
- we’ll come back to this in Version #4



BTW: Atomics Internals

We have two atomic packages in Go:

● internal/runtime/atomic
● sync/atomic

go/src/internal/runtime/atomic at master · golang/go (github.com)

go/src/sync/atomic at master · golang/go (github.com)

https://github.com/golang/go/tree/master/src/internal/runtime/atomic
https://github.com/golang/go/tree/master/src/sync/atomic


BTW: Atomics Internals

sync/atomic package:

● Internally assembly that jumps
to internal/runtime/atomic



BTW: Atomics Internals

sync/atomic package:

● Provides typed interface 
● Provides receiver style interface

doc.go is provided for documentation and 
compilation checks, but unused at runtime



BTW: Atomics Internals

sync/atomic package:

● Provides atomic.Pointer[T]
○ Generics implementation (from Go 1.19)
○ Both generic and non-generic versions exist for easy use



BTW: Atomics Internals

sync/atomic package:

● Provides atomic.Value
○ Supports atomic operations on interface values
○ Read/write to a 32-bit aligned word is atomic on most architectures
○ But an interface value is internally two 32-bit words (typ and data)

so the initial write requires STW via runtime_procPin/runtime_procUnpin



BTW: Atomics Internals

Q.

If “read/write to a 32-bit aligned word is atomic”, 
then why do we use sync/atomic package at 
all?

A.

Because it RMW (e.g. CompareAndSwapInt32)
operations are not atomic



BTW: Atomics Internals

Q.

If “read/write to a 32-bit aligned word is 
atomic”, then why do we use 
LoadInt32/StoreInt32 in sync/atomic 
package?

A.

Because it guarantees sequentially 
consistent memory ordering (which is 
stronger than release/acquire semantics)



BTW: Atomics Internals

Go’s memory order is not guaranteed

In relaxed memory model,
memory read/write to different locations in a process may be “reordered”



BTW: Atomics Internals

Both of these are equivalent in terms of Go’s specification:



BTW: Atomics Internals

So we may get 0 or 1 at random (depends on compiler/architecture):



BTW: Atomics Internals

Sequential consistency memory model
prohibits reordering of memory read/write 
in a process

So with atomics this code always prints 1:

Go Playground - The Go Programming Language

https://go.dev/play/p/WgjGXIvp7ls


BTW: (Real) Atomics Internals

Do you think…
Memory access look like this?

Mechanical Sympathy: CPU Cache Flushing 
Fallacy (mechanical-sympathy.blogspot.com)

https://mechanical-sympathy.blogspot.com/2013/02/cpu-cache-flushing-fallacy.html
https://mechanical-sympathy.blogspot.com/2013/02/cpu-cache-flushing-fallacy.html


BTW: (Real) Atomics Internals

Or this?
(+ address/data registers)

Mechanical Sympathy: CPU Cache Flushing 
Fallacy (mechanical-sympathy.blogspot.com)

https://mechanical-sympathy.blogspot.com/2013/02/cpu-cache-flushing-fallacy.html
https://mechanical-sympathy.blogspot.com/2013/02/cpu-cache-flushing-fallacy.html


BTW: (Real) Atomics Internals

Memory access is very slow
(up to 100 times or more)

We can’t simply let CPUs wait by 
stalling (nop) until memory access is 
complete

So we’ve resorted to the traditional 
method of caching - not just one, but 
many level of caching

Mechanical Sympathy: CPU Cache Flushing 
Fallacy (mechanical-sympathy.blogspot.com)

https://mechanical-sympathy.blogspot.com/2013/02/cpu-cache-flushing-fallacy.html
https://mechanical-sympathy.blogspot.com/2013/02/cpu-cache-flushing-fallacy.html


BTW: Atomics Internals

Q.

How do we make sure the operation is 
atomic (i.e not interrupted at all by other 
threads) in a multi-core processor with such 
complex memory hierarchy?

A.

Well, we sort of can’t…



BTW: Atomics Internals

Q.

How do we make sure the operation is 
atomic (i.e not interrupted at all by other 
threads) in a multi-core processor with such 
complex memory hierarchy?

A.

Well, we sort of can’t…

Fortunately, we had some geniuses work out 
the way…



BTW: (Real) Atomics Internals

x86 processors support so-called “lock” instructions:

Intel® 64 and IA-32 Architectures Software Developer’s Manual Combined Volumes: 1, 2A, 
2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4

Instructions prefixed by LOCK perform its operation 
atomically (e.g. LOCK ADD)

https://www.intel.com/content/www/us/en/content-details/782158/intel-64-and-ia-32-architectures-software-developer-s-manual-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html?wapkw=intel%2064%20and%20ia-32%20architectures%20software%20developer%27s%20manual&docid=782161
https://www.intel.com/content/www/us/en/content-details/782158/intel-64-and-ia-32-architectures-software-developer-s-manual-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html?wapkw=intel%2064%20and%20ia-32%20architectures%20software%20developer%27s%20manual&docid=782161


BTW: (Real) Atomics Internals

Initially, atomic instructions used to lock the entire memory bus to 
implement these lock instructions

This is expensive in presence of a hierarchical memory system, 
but was the only option before such system was introduced



BTW: (Real) Atomics Internals

Today, the cache coherence is implemented by the MESI protocol 
and its variants



BTW: (Real) Atomics Internals

Each cache line’s state is modelled by the state machine:

● Modified
○ Cache line differs from main memory

● Exclusive
○ Cache line matches memory and held only by local cache
○ Transitions to shared/invalid if other processors read/write

● Shared
○ Cache line matches memory but shared by other caches

● Invalid
○ Cache line is no longer used

MESI protocol - Wikipedia

https://en.wikipedia.org/wiki/MESI_protocol


BTW: (Real) Atomics Internals

By exploiting the MESI protocol, we can implement 
atomic instructions by only locking the local caches 
(e.g. by acquiring exclusive states and performing 
an optimistic update)

MESI protocol - Wikipedia

https://en.wikipedia.org/wiki/MESI_protocol


Version #3 - Spinning Might Be Worth It

Context switches are still expensive in 
hybrid threading

Use spinlocks for microcontention



Version #3 - Spinning Might Be Worth It

Spin a few times before sleeping

Check spinning is really worthwhile via 
runtime_canSpin()
(e.g. skip if processor has a single core)

Check if the mutex is unlocked on every 
iteration of spinning after the continue



Version #3 - Spinning Might Be Worth It

As in Version #2, we still leave Unlock() 
as a TODO - we’ll come back to this in 
Version #4



When Should I Spin?

runtime_canSpin():
go/src/runtime/proc.go at master· golang/go (github.com)

G should stop spinning if:

1. G has spinned more than 
active_spin (=4)

2. Number of cores is less than 2
3. All the other P’s are spinning, or;
4. Local run queue is not empty

(for fairness)

https://github.com/golang/go/blob/11dbbaffe1db00d8726215c3fa56e02d66e78de5/src/runtime/proc.go#L7137


runtime_canSpin():

go/src/runtime/proc.go at master· golang/go (github.com)

Derivation for 3.

“Total P’s ≤ Idle P’s + Spinning M’s + 1”

⇔ “Spinning M’s ≥ Total P’s - Idle P’s - 1”

⇔ “Spinning M’s ≥ Running P’s - 1”

⇔ “All the other P’s are spinning”

When Should I Spin?

https://github.com/golang/go/blob/11dbbaffe1db00d8726215c3fa56e02d66e78de5/src/runtime/proc.go#L7137


How Should I Spin?

runtime_doSpin()

compiles to RET in RISC-V

go/src/runtime/asm_riscv64.s at master· golang/go (github.com)

Why not PAUSE instead?
Actually I’m not sure…

https://github.com/golang/go/blob/11dbbaffe1db00d8726215c3fa56e02d66e78de5/src/runtime/asm_riscv64.s#L280C1-L282C5


Version #4 - Is There a Waiting G?

Lock() can now avoid call to runtime_Semacquire() if the mutex is 
already unlocked

But Unlock() always calls runtime_Semrelease() even if there is no 
waiting G

To provide fast path for Unlock(), we need to remember if there is any 
waiting G that should be awaken by runtime_Semrelease()



Version #4 - Is There a Waiting G?

Partition int32 state into:

● Locked bit (0th bit)
○ True if locked
○ Masked by mutexLocked

● Waiter count (1-31st bits)
○ Offset by mutexWaiterShift
○ Max 2^31≈2B waiters



Tips: RMW and CAS Loops

● Dropping/setting the locked bit
● Adding/subtracting the waiters count

These can be performed in a single RMW operation if done individually,
with atomic.AddInt32()



Tips: RMW and CAS Loops

How can we perform anything more complicated?

We can adopt a CAS loop, which is a form of optimistic update:

1. Read the old state
2. Make a new state based on the old state
3. Write the new state if the old state hasn’t changed,

otherwise start over

If step 3 succeeds, we can guarantee
that the whole update was performed atomically (or equivalent)



Version #4 - Is There a Waiting G?

If the mutex is unlocked and 
there are no waiters, return 
(no need to increment waiter count)

Otherwise spin for a few times,
and run a CAS loop to:

● Set the mutex locked
● Increment the waiters count if 

locked
● Sleep if the old state is locked



Version #4 - Is There a Waiting G?

For Unlock(), we can finally implement it 
properly, now that we can tell if there are 
any waiters we should wake up via 
runtime_Semrelease()



Version #4 - Is There a Waiting G?

Drop the locked bit

If the waiter count is zero, return
(no need to wake up any G)

Otherwise run a CAS loop to:

● Decrement the waiter count
and wake up a G



Version #4 - Is There a Waiting G?

During the CAS loop, return from Unlock() if:

● The mutex is unlocked by other G’s and 
now the waiter count is zero

● The mutex is locked by other G’s

In the latter case, the unlocked mutex was 
acquired by a new “barging in” G

So there is no need to wake up another G
only to end up waiting on this new G again



Tips: RMW and CAS Loops

Rule of thumb for concurrent algorithms

Leap of faith:

1. Make use of the RMW/CAS loop techniques, 
2. Check all interleaving schedules that look suspicious
3. Pray and hope it works okay



Version #5 - Is There a Woken G?

Unlock() can now avoid call to runtime_Semrelease() if there are no waiters

But we can also track if there is an woken G’s trying to acquire the mutex
so that Unlock() can also avoid call to runtime_Semrelease() even when 
there are no waiters

This flag should be set when there is:

● A new G’s “barging in” to acquire the mutex
● An existing G awaken by Unlock()



Version #5 - Is There a Woken G?

Partition int32 state into:

● Locked bit (0th bit)
● Woken bit (1st bit)

○ True if there is any woken G trying to acquire the mutex
○ Masked by mutexWoken

● Waiters count (0-31st bits)
○ Max 2^30≈1B waiters



Version #5 - Is There a Woken G?

Set the woken bit if not waking up from 
runtime_Semacquire()

If successfully updated, set awoke to 
true to avoid repeating this - otherwise 
attempt again in the next spin

If there is no waiting G, don’t set the 
woken bit since Unlock() already knows 
there’s no need to wake up waiting G’s 
in such case



Version #5 - Is There a Woken G?

The new state should have the woken bit 
cleared, because this flag is irrelevant once 
the current G acquires the mutex or goes to 
sleep

The operator &^ clears the LHS bits 
corresponding to the RHS bits
(equivalent to lhs & ~rhs)



Version #5 - Is There a Woken G?

During the CAS loop, also return from Unlock() if:

● There is a woken G trying to
acquire the mutex

The new state after success Unlock()
should have mutexWoken set



Version #5 - Is There a Woken G?

Q.

If Unlock() is only interested in new G’s “barging in”, 
why do we also set the woken bit in Unlock()?

A.

Because, for instance, this schedule on the right can 
result in a wasteful wake up in step 3 - we can avoid 
this if we set the woken bit in step 1

1. G1 unlocks the mutex 
and wakes up G2

2. G0 acquires the mutex 
by “barging in”

3. G0 releases the mutex 
and wakes up G3



Version #6 - Respect the Old

If the current G turns out to have waited before
(e.g. awaken but failed to compete with new G’s),
put this G at the front of the queue to prioritise it

We can queue G’s at the front by using:
runtime_SemacquireMutex



Version #6 - Respect the Old

Set queueLifo to true if waited before

The default behaviour was FIFO, but 
switches to LIFO for already waiting G’s:

● FIFO (First-in First-out) = Queue
● LIFO (Last-in First-out) = Stack



Version #6 - Respect the Old

The state and Unlock() remain the same as version #5



Version #7 - Someone’s Starving

We have exploited most of the fast paths both in Lock() and Unlock()

But we still allow new G’s to “barge in” and acquire the mutex before the 
previously waiting G’s, which leads to their “starvation”



Version #7 - Someone’s Starving

We have exploited most of the fast paths both in Lock() and Unlock()

But we still allow new G’s to “barge in” and acquire the mutex before the 
previously waiting G’s, which leads to their “starvation”



Version #7 - Someone’s Starving

For fairness, we should disallow any G’s from “barging in”

But for performance, we should allow such G’s unless it becomes a real problem
(e.g. some G’s have waited for more than 100ms)

This is because applications tend to acquire the same mutex multiple times in row, 
and so banning “barging in” always results in a context switch, which is still 
expensive in hybrid threading



Version #7 - Someone’s Starving

Without barging in:



Version #7 - Someone’s Starving

With barging in:



Version #7 - Someone’s Starving

Two modes of operation
to take balance between fairness and performance:

● Normal mode allows “barging in” in sacrifice of fairness
● Starvation mode prohibits “barging in” in sacrifice of performance



Version #7 - Someone’s Starving

Switch to starvation mode if:

● There is at least one G waiting for more than 1ms

Switch back to normal mode if:

● The current G is the last waiter in the queue
● The current G has waited less than 1ms



Version #7 - Someone’s Starving

Partition int32 state into:

● Locked bit (0th bit)
● Woken bit (1st bit)
● Starving bit (2nd bit)

○ True if starvation mode is on
○ Masked by mutexStarving

● Waiters count (0-31st bits)
○ Max 2^39≈500M waiters



Version #7 - Someone’s Starving

After waking up, check if the awaken G is 
starving and set starving to true if this is 
the case

In the next CAS loop iteration, set the 
starving bit which switches the mutex to 
the starvation mode



Version #7 - Someone’s Starving

In starvation mode, mutex ownership is 
directly handed off to the awaken G

The new “barging in” G’s should not attempt 
to acquire the mutex at all

They should not spin, set the locked bit or the 
woken bit (because it’s useless), nor return 
before calling runtime_Semacquire()



Version #7 - Someone’s Starving

In starvation mode, mutex ownership is 
directly handed off to the awaken G

The awaken G should set the locked bit 
and decrement the waiter count 
immediately after waking up



Version #7 - Someone’s Starving

Also, the awaken G checks has waited less 
than 1ms (i.e. starving is false) or it’s the 
last waiting G in the queue

If this is the case, the mutex switches back 
to the normal mode



Version #7 - Someone’s Starving

The G that put the mutex into the starvation 
mode (let’s call this G1) is pushed at the front of 
the queue (queueLifo) and all the other G’s will 
be put at the back

If the awaken G has starving set to still false, the 
G1 should have most likely acquired the mutex

So it’s safe to switch back to the normal 
mode/common to be in starvation mode for just 
one G waken up



Version #7 - Someone’s Starving

If the mutex is in the starvation mode, call 
runtime_Semrelease() immediately

We also set the second argument 
(handoff) to runtime_Semrelease() to true
(We’ll talk about this later)



Version #7 - Someone’s Starving

Q.

If the starving bit in the mutex state prevents new G’s from barging in, why do 
we set the locked bit after waking up in Lock()?

A.

Because the locked bit must be set in case the mutex goes back to the 
normal mode



Version #7 - Someone’s Starving

Q.

Why can’t we set the locked bit and decrement the waiter count during 
Unlock(), rather than letting the awaken G handle it?

A.

Because we also want to transition back to the normal mode and perform 
these updates at the same time atomically



Version #7 - Someone’s Starving

Q.

But still, why do we exit the starvation mode in Lock() after waking up, rather 
than in Unlock()?

A.

Because it’s convenient to just use waitStartTime in the awaken G’s stack

Also more critically, if we drop the starving bit in Unlock(), a new “barging in” 
G may acquire the mutex before the starving G wakes up, which is likely 
because waking up takes most time



Version #8 - Brushing up

Extract the slow path to lockSlow() so that the 
fast path can be inlined by the compiler

Assert on the mutex state consistency;
if throw() is ever called, there must be 
something wrong with the mutex 
implementation



Version #8 - Brushing up

Extract the slow path to unlockSlow() so that 
the fast path can be inlined by the compiler

Assert Unlock() is not called on an already 
unlocked mutex, by adding back 
mutexLocked and checking the locked bit in 
unlockSlow()

throw() is used for Go internal errors, whereas 
fatal() is used for user-code errors



Back to the Runtime Semaphore

Now let’s revisit the runtime semaphore:

● runtime_Semacquire()
● runtime_SemacquireMutex()
● runtime_Semrelease()



Back to the Runtime Semaphore

Now let’s revisit the runtime semaphore:

● runtime_Semacquire()
○ Aliased to semacquire1()

● runtime_SemacquireMutex()
○ Aliased to semacquire1()

● runtime_Semrelease()
○ Aliased to semrelease1()



Back to the Runtime Semaphore

Before we look into the details, we need to 
learn about the sudog struct

The sudog is a wrapper struct around the g 
struct, which represents a G



Back to the Runtime Semaphore

The sudog struct represents a node in a linked 
list/treap of waiting G’s and hold references to 
other sudog’s to traverse them:

● g for the wrapped goroutine
● parent for traversing treaps
● next/prev for traversing outer lists/treaps 

(for treaps, each points to left/right child)
● waitlink/waittail for traversing inner lists
● ticket for treap priority
● elem for payload (e.g. semaphore address)
● waiters for the size of linked list/treap if it’s 

a head element



Back to the Runtime Semaphore

The sudog’s fields cannot be embedded 
in the g struct itself, because a single G 
may be put in multiple wait queues of 
various synchronisation primitives

An instance of sudog is allocated from a 
special pool to avoid dynamic memory 
allocation (via acquireg() and releaseg())



Back to the Runtime Semaphore

The wait queue of a runtime semaphore is 
keyed by memory addresses 

So semTable is internally implemented as 
a hash table mapping an address to its 
corresponding queue

We add pad in the semTable struct that 
wraps semaRoot to prevent it from 
spanning two cache lines



Back to the Runtime Semaphore

This semTable hash table:

● Takes modulo semTabSize 
of the 32-3=29 MSB bits of the sempahore 
address to find the bucket (or semaRoot)

● Uses separate chaining for hash collision 
resolution, where colliding sudog’s is 
chained in a treap rather than a simple 
linked list
(We’ll talk about this later)



Since the bucket is found by a modulo, 
many semaphore addresses could end up in the 
same bucket

For instance, an array of semaphores, whose
k-th semaphore is placed at k×semTabSize, 
would all hashes to the first bucket

Back to the Runtime Semaphore



semTabSize is therefore prime to “not correlate 
with user patterns”

Because then for any slice elements with stride s,
{(1≫3)×s,(2≫3)×s,...,((semTabSize-1)≫3)×s}
is congruent to {1≫3,2≫3,...,(semTabSize-1)
≫3} under modulo semTabSize
(c.f. the proof of Fermat’s little theorem)

There are better hash algorithms,
but they can be much more expensive

Back to the Runtime Semaphore



Acquiring the Runtime Semaphore

For brevity, we’ll only go through the 
relevant parts (no comments or profiling)



Acquiring the Runtime Semaphore

First check that the current G hasn’t been 
rescheduled on another M

Then, if the value is zero, 
cansemacquire() returns false, 
otherwise decrement it in a CAS loop

This provides a fast path for 
semacquire1()



Acquiring the Runtime Semaphore

If the value is zero, get an instance of 
sudog via acquireSudog and also find 
the corresponding bucket

Then proceeds to queue the current G 
into the wait queue of semaRoot

But since this semaRoot is a global 
data structure, it needs to be protected 
from concurrent access by other M’s 
with lockWithRank



Acquiring the Runtime Semaphore

Q.
A lock used to implement a lock…? How 
does that make sense?

A.

This lock is indeed very similar to the 
one we’ve seen so far…
(e.g. it uses atomic locked bit, spinlock)



Acquiring the Runtime Semaphore

Q.
A lock used to implement a lock…? How 
does that make sense?

A.

But this lock is aimed to prevent other 
M’s concurrent access, not other G’s

This is internally implemented as a call 
to pthread_mutex_lock() in OSX



Acquiring the Runtime Semaphore

Now back to semacquire1(),
immediately increment the bucket’s waiter 
count nwait to disable the fast path in 
semrelease1()
(We’ll talk about this later)



Acquiring the Runtime Semaphore

Then it calls cansemacquire() again, 
because lockWithRank() may have slept 
for a long time

If this extra call cansemacquire() returns 
true, decrement the nwait, unlock the lock 
and exit the loop



Acquiring the Runtime Semaphore

Incrementing nwait before this 
cansemacquire(), only to decrement it 
again may seem inefficient, but necessary 
because cansemacquire() involves a CAS 
loop and may take some time

But this is necessary since we want to 
disable the fast path in semrelease1() as 
soon as possible once lockWithRank() 
returns



Acquiring the Runtime Semaphore

Finally, queue the sudog and call 
goparkunlock() which unlocks the lock and 
puts the G into sleep

After woken up, successfully acquires the 
semaphore if s.ticket is not zero or 
cansemacquire() returns true

We could check cansemacquire() in the 
next iteration too, but lockWithRank() can 
take a lot of time before this happens



You might wonder why we check 
“if s.ticket is not 0” before cansemacquire(),
so here’s how it works:

● Dequeuing a sudog from a wait queue sets its ticket 
to zero because its value is no longer relevant

● In the normal mode, cansemacquire() is called after 
the waiting G wakes up in semacquire1()

● In the starvation mode, cansemacquire() is called 
just before semrelease1() returns

Normal/starvation mode is only relevant in 
semrelease1() and is distinguished by its second 
argument (handoff)

Acquiring the Runtime Semaphore



You might wonder why we check 
“if s.ticket is not 0” before cansemacquire(),
so here’s how it works:

● This determines if the current G that released 
the semaphore should hand off control to the 
starving G

● But this makes sense only if the semaphore 
can be acquired, otherwise the awaken G will 
go back to sleep immediately after waking up

● If cansemacquire() returns true, this sets 
s.ticket to 1, in order to tell the awaken G in 
semacquire1() that it shouldn’t call 
cansemacquire() again

Acquiring the Runtime Semaphore



Acquiring the Runtime Semaphore

And last but not least…
we call releaseSudog() to return the 
sudog to the special pool



Releasing the Runtime Semaphore

Again, we’ll only go through the relevant 
parts (no comments or profiling)

The second argument (handoff) is set if 
the caller should hand off control to the 
starving G
(We’ll talk about this later)



Releasing the Runtime Semaphore

First increment the semaphore value, so that 
semacuire1() won’t go to sleep unnecesarily

Then check if the bucket chosen by rootFor() 
is empty (nwait) - if this is the case, it’s safe to 
return since there won’t be any sudog with the 
addr either

Otherwise, call lockWithRank() to protect 
semaRoot from concurrent access by other 
M’s



Releasing the Runtime Semaphore

Now check if the chosen bucket is empty again 
(nwait), because again lockWithRank() may 
have slept for a long time

If this is neither the case, dequeue a sudog 
whose G was waiting on addr, and decrement 
the bucket’s waiter count (nwait)

If the sudog is nil, there is no G waiting on 
addr, so simply return



Releasing the Runtime Semaphore

At this point we can call unlock() because the 
semaRoot will no longer be accessed from 
here onwards

Now if the mutex was in normal mode 
(handoff is false), we can just make the 
waiting G runnable via readyWithTime()



Releasing the Runtime Semaphore

Otherwise, the mutex was in starvation mode 
(handoff is true)

In this case we would want to hand off control 
to the starving G’s, rather than letting the 
current G continue its execution and possibly 
“barging in” to acquire the same mutex



Releasing the Runtime Semaphore

But again, this only makes sense if 
cansemacquire() is true, otherwise the 
awaken G will go to sleep immediately after 
waking up

Calling cansemacquire() also decrements the 
count before new G’s can “barge in”, making it 
more likely for the starving G to acquire the 
sempahore



But we don’t want the awaken G in 
semacquire1() to call cansemacquire() again, 
otherwise it’s not only wasteful but would also 
decrement the value twice

So as we said, we set the sudog’s ticket to 1, 
which is 0 when returned from dequeue(), to 
tell the awaken G that there is no need to 
check cansemacquire() again

Releasing the Runtime Semaphore



Releasing the Runtime Semaphore

When handing off control of the current G, we 
call goyield() instead of Gosched():

● goyield() puts the current G to the local run 
queue

● Gosched() puts the current G to the global 
run queue

In this case, no need to put sudog to global run 
queue because it only increases contention and 
decreases cache locality -  we expect the current 
G to be given back control soon



Queueing/Dequeuing the G

So far we have abstracted a lot over this “wait queue” 
which is present in each bucket (semaRoot) of the hash table (semaTable)

Let’s look into this in a bit more detail!



Queueing/Dequeuing the G with One-Level Lists

Initially (up until 2017),
this was a simple linked list of heterogeneous 
addresses

The semaphore address (&m.sema) is 
stored in s.elem 



Queueing/Dequeuing the G with One-Level Lists

No need to think of concurrent access 
because semacquire1() and semrelease1() 
must acquire the lock beforehand
(although we could have made it lock-free…)



Queueing/Dequeuing the G with One-Level Lists

Here’s a diagram illustrating the one-level list:



Queueing/Dequeuing the G with One-Level Lists

But since this issue got raised,
it’s become a significantly more complicated…

sync: bad placement of multiple contested locks can cause drastic 
slowdown · Issue #17953 · golang/go (github.com)

https://github.com/golang/go/issues/17953
https://github.com/golang/go/issues/17953


Queueing/Dequeuing the G with Two-Level Lists

Problem with one-level lists:
runtime: use two-level list for semaphore address search in semaRoot (36792) · Gerrit Code Review (googlesource.com)

● Given N goroutines (G1,G2,...,GN)
trying to acquire two mutexes (M1,M2) in the same order of M1→M2

○ G1 is holding M2
○ G2 is waiting on M2
○ G3 is holding M1
○ G4,...,GN are waiting on M1
○ M1 and M2’s &m.sema hash to the same bucket

● When G1 releases M2, it needs to traverse all the sudog’s for G4,..,GN 
before finding G2

● This means semrelease1() is O(N)

https://go-review.googlesource.com/c/go/+/36792


Queueing/Dequeuing the G with Two-Level Lists

Solution with two-level lists:

runtime: use two-level list for semaphore address search in semaRoot (36792) · Gerrit Code Review (googlesource.com)

● Use a two level list for each bucket where the sudog’s with the same 
&m.sema is grouped in a linked list and placed at the same element of the 
outer list

● Searching for a particular address is now constant
● Popping from the front/pushing at the back of the inner list is still constant
● So this makes semrelease1() down to O(1)

https://go-review.googlesource.com/c/go/+/36792


Queueing/Dequeuing the G with Two-Level Lists

Here’s a diagram illustrating the two-level list:



Queueing/Dequeuing the G with Two-Level Lists

Traverse the outer list by following 
s.next, until we find a sudog with 
matching elem

If a sudog with the corresponding addr 
is not found, inserts a new such element 
in the outer list



Queueing/Dequeuing the G with Two-Level Lists

The sudog in the outer list is also the 
head of the inner list

Every sudog is used to point to a g and 
no sudog is used just as an internal 
node



Queueing/Dequeuing the G with Two-level Lists

Traverse the outer list by following s.next, 
and jump to Found if a sudog with the 
matching address is found

If the corresponding inner list is not a 
singleton, pop an element from the inner list

Otherwise remove the entire inner list and 
the corresponding element from the outer list



Queueing/Dequeuing the G with Treaps

Problem with two-level lists:
runtime: use balanced tree for addr lookup in semaphore implementation (37103) · Gerrit Code Review (googlesource.com)

● Given N goroutines (G1,G2,...,GN)
trying to acquire N/2 mutexes (M1,M2,...,M(N/2)) in the same order of 
M1→M2→…→M(N/2)

○ G1 is holding M(N/2)
○ G2 is waiting on M(N/2)
○ …
○ G(N-1) is holding M1
○ GN is waiting on M1
○ M1,M2,...,M(N/2)’s &m.sema hash to the same bucket

● When G1 releases M(N/2), it needs to traverse all the sudog’s for 
M1,M2,...,M(N/2-1)’s addresses before finding the one for M(N/2)

● This means semrelease1() is still O(N)

https://go-review.googlesource.com/c/go/+/37103


Queueing/Dequeuing the G with Treaps

Solution with treaps:

runtime: use balanced tree for addr lookup in semaphore implementation (37103) · Gerrit Code Review (googlesource.com)

● Use a treap for each bucket where the sudog’s with the same &m.sema 
is grouped in a linked list and placed at the same node of the treap

● Searching for a particular address now takes logarithmic time
● Popping from the front/pushing at the back of the inner list is still constant
● So this makes semrelease1() down to O(log(N))

https://go-review.googlesource.com/c/go/+/37103


Queueing/Dequeuing the G with Treaps

Here’s a diagram illustrating the treap:



Queueing/Dequeuing the G with Treaps

Treap is a hybrid of a BST and a max heap

Each node of a treap has a key, value and a 
randomly assigned priority

● A BST in terms of key
○ In-order equals the sort order

● A min heap in terms of priority
○ Parent priority is greater than child priority

Treap can be seen as a “Cartesian” tree
(looks like a binary tree when mapped in 2D)

Treap - Wikipedia

https://en.wikipedia.org/wiki/Treap


Queueing/Dequeuing the G with Treaps

Treap operations in a nutshell:

● Finding a node:
1. Perform a normal BST search by key

● Inserting a node:
1. Assign random priority to the node
2. Perform normal BST insertion by key
3. Rotate the tree until the heap invariant is restored

● Deleting a node:
1. Assume the node to be deleted has the largest priority
2. Rotate the tree until the node moves down to become a leaf
3. Delete the leaf node



Queueing/Dequeuing the G with Treaps

Treap rotations in a nutshell:

● Rotate right if the left child priority is 
less than the parent priority

● Rotate left if the right child priority is 
less than the parent priority

Binary Search Trees (lmu.edu)

https://cs.lmu.edu/~ray/notes/binarysearchtrees/


Queueing/Dequeuing the G with Treaps

A tree rotations maintains the in-order and 
thus the BST invariant

Given the left/right subtree maintains the 
heap invariant, a tree rotation maintains the 
heap invariant for the entire tree

So by recursively perform the tree rotation 
from bottom-up, we can restore the heap 
invariant

Binary Search Trees (lmu.edu)

https://cs.lmu.edu/~ray/notes/binarysearchtrees/


Queueing/Dequeuing the G with Treaps

Treap is self-balancing because:

● Let L/R denote the left/right subtree, X 
its parent node, and P(T) the set of 
priorities of the nodes in a tree T

● As more nodes end up in L, the 
probability that min(P(L)) < P(X) < 
min(P(R)) increases, trigerring a tree 
rotation, and vice versa

Binary Search Trees (lmu.edu)

https://cs.lmu.edu/~ray/notes/binarysearchtrees/


Queueing/Dequeuing the G with Treaps

Treap is self-balancing because:

● This sequence of tree rotations 
eventually reaches the equilibrium to the 
point where L and R are equally sized

● This property holds for any subtree, and 
so the entire treap should be balanced

Binary Search Trees (lmu.edu)

https://cs.lmu.edu/~ray/notes/binarysearchtrees/


Queueing/Dequeuing the G with Treaps

Traverse the outer treap’s children by following 
next/prev (each points to left/right child)

If the sudog with the matching address (t) is found:

● If in LIFO mode, substitute t with the new one, 
by copying its priority, parent/child pointers, and 
place t after the new one in the inner list

● Otherwise simply put the new one at the end of 
the inner list

Also remember to increment waiters count of the 
inner list



Queueing/Dequeuing the G with Treaps

If no matching sudog is found in the outer 
treap, we obtain a random number via 
cheaprand() to assign a priority after insertion

cheaprand() is a fast but non-cryptographic 
(not safe) random number generator, which is 
implements:

● wyhash on ARM and AMD etc.
● xorshift64+ on other platforms



Queueing/Dequeuing the G with Treaps

And finally we insert the new node, and rotate 
the tree from bottom up, until the heap invariant 
is restored



Queueing/Dequeuing the G with Treaps

For the tree rotations, notice 
rotateLeft(s.parent)/rotateRight(s.parent) 
makes s the root of the parent tree



Queueing/Dequeuing the G with Treaps

Traverse the outer treap again, and return if a sudog 
with the matching address (s) is not found

Otherwise jump to Found



Queueing/Dequeuing the G with Treaps

If the inner list is not a singleton, we can safely 
substitute the second frontmost element with the 
head, without deleting the node s in the outer treap

Otherwise assume s has the largest priority and 
rotate the tree to push s down until it becomes a 
leaf, and then delete it from the outer treap

Also remember to decrement the waiters count of 
the inner list



Queueing/Dequeuing the G with Treaps

For the tree rotations, notice that
rotateLeft(s)/rotateRight(s) makes s the 
left/right subtree



Appendix: Sync Primitives Dependency

Today we’ve looked at sync/mutex - but 
we should definitely explore more on the 
sync and runtime package in the future!



Appendix: Detecting Races

Implemented with TSAN (C++) internally:

go/src/runtime/race.go at master · golang/go (github.com)

https://github.com/golang/go/blob/master/src/runtime/race.go


Appendix: Profiling Mutexes

Implemented in pprof and mprof in runtime/sema:

go/src/runtime/mprof.go at master · golang/go (github.com)

https://github.com/golang/go/blob/master/src/runtime/mprof.go

